| L(s) = 1 | + (0.993 + 0.115i)3-s + (−0.251 − 0.967i)5-s + (0.584 − 0.811i)7-s + (0.973 + 0.228i)9-s + (−0.884 + 0.466i)11-s + (−0.798 − 0.602i)13-s + (−0.138 − 0.990i)15-s + (0.0461 − 0.998i)19-s + (0.673 − 0.739i)21-s + (0.811 + 0.584i)23-s + (−0.873 + 0.486i)25-s + (0.940 + 0.339i)27-s + (0.295 − 0.955i)29-s + (0.506 + 0.862i)31-s + (−0.932 + 0.361i)33-s + ⋯ |
| L(s) = 1 | + (0.993 + 0.115i)3-s + (−0.251 − 0.967i)5-s + (0.584 − 0.811i)7-s + (0.973 + 0.228i)9-s + (−0.884 + 0.466i)11-s + (−0.798 − 0.602i)13-s + (−0.138 − 0.990i)15-s + (0.0461 − 0.998i)19-s + (0.673 − 0.739i)21-s + (0.811 + 0.584i)23-s + (−0.873 + 0.486i)25-s + (0.940 + 0.339i)27-s + (0.295 − 0.955i)29-s + (0.506 + 0.862i)31-s + (−0.932 + 0.361i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0570 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0570 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.329181100 - 1.407288071i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.329181100 - 1.407288071i\) |
| \(L(1)\) |
\(\approx\) |
\(1.319524532 - 0.4541435691i\) |
| \(L(1)\) |
\(\approx\) |
\(1.319524532 - 0.4541435691i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
| good | 3 | \( 1 + (0.993 + 0.115i)T \) |
| 5 | \( 1 + (-0.251 - 0.967i)T \) |
| 7 | \( 1 + (0.584 - 0.811i)T \) |
| 11 | \( 1 + (-0.884 + 0.466i)T \) |
| 13 | \( 1 + (-0.798 - 0.602i)T \) |
| 19 | \( 1 + (0.0461 - 0.998i)T \) |
| 23 | \( 1 + (0.811 + 0.584i)T \) |
| 29 | \( 1 + (0.295 - 0.955i)T \) |
| 31 | \( 1 + (0.506 + 0.862i)T \) |
| 37 | \( 1 + (0.690 - 0.723i)T \) |
| 41 | \( 1 + (-0.620 - 0.783i)T \) |
| 43 | \( 1 + (-0.565 - 0.824i)T \) |
| 47 | \( 1 + (-0.526 + 0.850i)T \) |
| 53 | \( 1 + (0.228 - 0.973i)T \) |
| 59 | \( 1 + (0.317 - 0.948i)T \) |
| 61 | \( 1 + (-0.0692 + 0.997i)T \) |
| 67 | \( 1 + (0.739 - 0.673i)T \) |
| 71 | \( 1 + (-0.160 - 0.986i)T \) |
| 73 | \( 1 + (-0.978 - 0.206i)T \) |
| 79 | \( 1 + (0.905 + 0.424i)T \) |
| 83 | \( 1 + (-0.486 - 0.873i)T \) |
| 89 | \( 1 + (-0.798 + 0.602i)T \) |
| 97 | \( 1 + (0.986 - 0.160i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.548731498560552342276001775898, −20.74992259149725800401378502630, −19.89324353843314505802303327827, −18.89088978124459881742346470711, −18.659941393652542485646853446443, −18.03770642977203065209286629432, −16.75165907498825170354996837163, −15.836642429185190014133908220256, −14.89188441548532142209453955551, −14.74767073369792360960798457737, −13.86470530876224436967742401050, −12.97438286583965396957260935044, −12.05181685996520942982900101685, −11.281505364655985788173866528621, −10.292520423850144510218298190521, −9.620286095970947304729933393468, −8.48707774065617795666273418173, −8.02717947649731338438476836955, −7.15964215430844598700908689935, −6.30219563411001376938967494884, −5.12973760662544931942413273990, −4.18335436758546384940505893312, −2.95638873832926670412402477562, −2.62026194078496456419033594119, −1.55295804406162942397744027932,
0.67670219211141608478184974344, 1.83335935249647811016818848885, 2.80015565699981124691810390760, 3.86202012923236233288855218281, 4.824847276372304859290978352788, 5.13729237359374776140470501100, 6.9523544718694315617757469395, 7.65900902165198528919942081311, 8.18048302051238064918762043546, 9.08950037354030539877625390975, 9.905104555309458070782761732052, 10.623057140814805808535233521720, 11.72018441439614469858839164531, 12.75259075500791511477143844565, 13.259055054108025331298267944884, 13.96345438425303693845945278628, 15.020020859164308262695455599781, 15.488008946832570969263834906239, 16.320690422278769106204084421682, 17.37466739674296191328621002851, 17.78054909446546166764045123994, 19.078207289551427158264349818015, 19.76989064036929511282732936333, 20.23993624585055012440446959471, 21.0108564131776672094838783797