L(s) = 1 | + (−0.986 − 0.162i)3-s + (0.956 − 0.290i)5-s + (−0.659 + 0.751i)7-s + (0.946 + 0.321i)9-s + (−0.412 − 0.910i)11-s + (−0.991 + 0.130i)15-s + (0.991 + 0.130i)17-s + (−0.0327 + 0.999i)19-s + (0.773 − 0.634i)21-s + (0.997 + 0.0654i)23-s + (0.831 − 0.555i)25-s + (−0.881 − 0.471i)27-s + (−0.812 + 0.582i)29-s + (0.707 + 0.707i)31-s + (0.258 + 0.965i)33-s + ⋯ |
L(s) = 1 | + (−0.986 − 0.162i)3-s + (0.956 − 0.290i)5-s + (−0.659 + 0.751i)7-s + (0.946 + 0.321i)9-s + (−0.412 − 0.910i)11-s + (−0.991 + 0.130i)15-s + (0.991 + 0.130i)17-s + (−0.0327 + 0.999i)19-s + (0.773 − 0.634i)21-s + (0.997 + 0.0654i)23-s + (0.831 − 0.555i)25-s + (−0.881 − 0.471i)27-s + (−0.812 + 0.582i)29-s + (0.707 + 0.707i)31-s + (0.258 + 0.965i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.378 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.378 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9394032483 + 0.6308481926i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9394032483 + 0.6308481926i\) |
\(L(1)\) |
\(\approx\) |
\(0.8669930461 + 0.07052907392i\) |
\(L(1)\) |
\(\approx\) |
\(0.8669930461 + 0.07052907392i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.986 - 0.162i)T \) |
| 5 | \( 1 + (0.956 - 0.290i)T \) |
| 7 | \( 1 + (-0.659 + 0.751i)T \) |
| 11 | \( 1 + (-0.412 - 0.910i)T \) |
| 17 | \( 1 + (0.991 + 0.130i)T \) |
| 19 | \( 1 + (-0.0327 + 0.999i)T \) |
| 23 | \( 1 + (0.997 + 0.0654i)T \) |
| 29 | \( 1 + (-0.812 + 0.582i)T \) |
| 31 | \( 1 + (0.707 + 0.707i)T \) |
| 37 | \( 1 + (-0.999 + 0.0327i)T \) |
| 41 | \( 1 + (-0.0654 + 0.997i)T \) |
| 43 | \( 1 + (0.986 - 0.162i)T \) |
| 47 | \( 1 + (-0.923 + 0.382i)T \) |
| 53 | \( 1 + (-0.0980 + 0.995i)T \) |
| 59 | \( 1 + (-0.973 - 0.227i)T \) |
| 61 | \( 1 + (0.935 - 0.352i)T \) |
| 67 | \( 1 + (-0.162 + 0.986i)T \) |
| 71 | \( 1 + (-0.751 - 0.659i)T \) |
| 73 | \( 1 + (0.980 - 0.195i)T \) |
| 79 | \( 1 + (-0.923 - 0.382i)T \) |
| 83 | \( 1 + (0.471 + 0.881i)T \) |
| 89 | \( 1 + (0.442 - 0.896i)T \) |
| 97 | \( 1 + (0.965 - 0.258i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.74917243850238384758567067419, −17.71546806965726042702263137044, −17.378400553833482400969761243214, −16.854398215634741950408504316619, −16.07593984888357143371896485746, −15.33846237025346767198199047173, −14.64158989037601194076103499554, −13.634344363471422169851053040412, −13.11968183596986837665545642709, −12.55537732892346142750439090138, −11.67132249062811414505734829575, −10.78677223892164500396399146228, −10.34773437136549860085986134561, −9.653357278511129385778489555228, −9.24409478845849913153462731778, −7.76117570302663205306857559080, −6.994523038523750812673187550326, −6.64507463555853411339121396845, −5.67128133221046346626909839156, −5.1248102079681918320597715350, −4.31300102442523591947577018328, −3.36261168076286832124774177345, −2.42319316730726097218803717219, −1.42660556100848991756838899005, −0.4461799011891529952846891285,
0.997070395918716088771385661490, 1.68284486620909685970947863627, 2.80893950778257899475431533975, 3.51914990182951634870844363824, 4.861724909899491410878616734139, 5.43147525629261102351453075359, 5.97468611783668257977516507369, 6.4831202435149626773513176059, 7.47269375610385985681418874223, 8.418486870536686665074956611178, 9.18586551415209392544752105936, 9.94185584755832335833854153555, 10.492459431572438484995449686933, 11.251046362224264372220676626369, 12.18928971125882130354870311828, 12.62921658352327341495911679340, 13.2260964112685903036232415793, 14.00242738317773035412267947221, 14.82326104446224873412335913016, 15.83346243183996914788031270331, 16.34358981731763637257758612449, 16.86385307228149348686090975451, 17.534034342264509755500120775277, 18.378813160295256217973399842201, 18.80415726315176448337171090894