| L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s + 8-s − 11-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (0.5 + 0.866i)22-s + 23-s + (−0.5 + 0.866i)26-s + (0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (−0.5 + 0.866i)32-s + (0.5 − 0.866i)34-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s + 8-s − 11-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (0.5 + 0.866i)22-s + 23-s + (−0.5 + 0.866i)26-s + (0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (−0.5 + 0.866i)32-s + (0.5 − 0.866i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4983018361 - 0.6235167866i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4983018361 - 0.6235167866i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6778353554 - 0.3545981715i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6778353554 - 0.3545981715i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.29916399276589510839822929417, −24.80811940301579846177124005280, −23.59438004425161227596138819855, −23.21787706958411084176032091157, −22.020685048449581012901345717197, −20.948057925294182338687327911961, −19.916249474069410849400703324334, −18.77213197764178460678830392133, −18.361516514193468614249739724970, −17.19609166409849467943372786511, −16.36983322806569116845680701134, −15.67183792854491854965712922250, −14.54542027513993822673353500554, −13.88007171795030405612096559019, −12.7312284791751551504117884897, −11.46166556745500069489421196873, −10.276730373784183078940545461333, −9.53286721644353213858254544390, −8.437391267127029061574589490792, −7.49626743174118417391164030230, −6.65950476668699773478963699598, −5.37876343073717234285950437618, −4.65180811028656383855082695741, −2.91793371683570929103274552722, −1.287118108123940877353999640609,
0.69009698424963770738238969615, 2.320184489997965178170024874828, 3.17656671875672487385474191027, 4.522681351339846839182568360529, 5.621773002716690419991591422458, 7.34043826670450627768295982789, 8.05727106538134063356138040303, 9.16345340152258584212568797862, 10.201616643433827170623022679177, 10.8402952846735955817946105013, 11.97921222410750348728801074272, 12.88469832749511566592844277741, 13.56937791870664260521212594687, 14.980818747726047364443360163173, 15.948871227751219295643795140304, 17.19627508130316251200741108947, 17.717907452076154066034082062436, 18.829398362367168807505114774143, 19.47363208351506646782574897290, 20.52864822373084577221807494128, 21.15303407055539617635163594257, 22.128500596137465366706968154597, 22.94233685749476313181088282716, 23.98552872662073170022832459509, 25.182064387693999606173539889947