| L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.587 − 0.809i)3-s + (−0.309 − 0.951i)4-s + 6-s + (0.587 + 0.809i)7-s + (0.951 + 0.309i)8-s + (−0.309 + 0.951i)9-s + (−0.587 + 0.809i)12-s + (0.951 + 0.309i)13-s − 14-s + (−0.809 + 0.587i)16-s − i·17-s + (−0.587 − 0.809i)18-s + (−0.309 + 0.951i)19-s + (0.309 − 0.951i)21-s + ⋯ |
| L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.587 − 0.809i)3-s + (−0.309 − 0.951i)4-s + 6-s + (0.587 + 0.809i)7-s + (0.951 + 0.309i)8-s + (−0.309 + 0.951i)9-s + (−0.587 + 0.809i)12-s + (0.951 + 0.309i)13-s − 14-s + (−0.809 + 0.587i)16-s − i·17-s + (−0.587 − 0.809i)18-s + (−0.309 + 0.951i)19-s + (0.309 − 0.951i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4385123203 + 0.6620445630i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4385123203 + 0.6620445630i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6382945249 + 0.1879339398i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6382945249 + 0.1879339398i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.587 + 0.809i)T \) |
| 3 | \( 1 + (-0.587 - 0.809i)T \) |
| 7 | \( 1 + (0.587 + 0.809i)T \) |
| 13 | \( 1 + (0.951 + 0.309i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.587 - 0.809i)T \) |
| 29 | \( 1 + (-0.309 - 0.951i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.587 + 0.809i)T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 + (0.951 - 0.309i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.951 + 0.309i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (0.809 - 0.587i)T \) |
| 97 | \( 1 - iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.85124781569095273482903152592, −23.95218634487782873983910980880, −23.27527638620072404435286321473, −22.09265891709543173338822050628, −21.52537275544936740910613646672, −20.49814578905563247067816433308, −20.04380396990282742434945701326, −18.68475075416480799188274056373, −17.634645835255796911006018511669, −17.171389451105652617961493684009, −16.18406529500565782742120705011, −15.14304380092864353077701328356, −13.800169746828504770069993127604, −12.79151342697971168814502193400, −11.56319385743707580428564886382, −10.87326156383979185622148138391, −10.27797319221102773518514796886, −9.11069128201808349811864411649, −8.18850799431914412715898819090, −6.89426435010369711211148434017, −5.39461441353871084499861353740, −4.1470586536230584140439520295, −3.4900157355298920765390629810, −1.66196929503244949617270554829, −0.37766718920795599823659466177,
1.13315870711192308275270120317, 2.23392634731791659533898378897, 4.52392691368985487073711548165, 5.70656807989622508196028286944, 6.27901149977961035925082934689, 7.530162563113206428239655396686, 8.29088999324804830251873009644, 9.284485000714725639171794456605, 10.69885831337050548481478890388, 11.514001438080595871832485997700, 12.615316096397420498568920903608, 13.84411352320440074735570345838, 14.576090545396554835365276050276, 15.882359087839611753048237184322, 16.52387608988956556070829400608, 17.632828407419606962043093885213, 18.424108131088442114181186682432, 18.72944455240647098432188714359, 20.000965697884629635262539821509, 21.23842711256073838706956367797, 22.56506124912327209381477280041, 23.19715833138109232809892349320, 24.138749261819787400142161892019, 24.87495924467476621334349303299, 25.40847632704590731157699257444