L(s) = 1 | + (0.996 − 0.0804i)3-s + (0.992 + 0.120i)5-s + (0.534 − 0.845i)7-s + (0.987 − 0.160i)9-s + (−0.160 + 0.987i)11-s + (0.999 + 0.0402i)15-s + (0.845 + 0.534i)17-s + (−0.866 + 0.5i)19-s + (0.464 − 0.885i)21-s + (−0.5 + 0.866i)23-s + (0.970 + 0.239i)25-s + (0.970 − 0.239i)27-s + (−0.632 − 0.774i)29-s + (0.239 + 0.970i)31-s + (−0.0804 + 0.996i)33-s + ⋯ |
L(s) = 1 | + (0.996 − 0.0804i)3-s + (0.992 + 0.120i)5-s + (0.534 − 0.845i)7-s + (0.987 − 0.160i)9-s + (−0.160 + 0.987i)11-s + (0.999 + 0.0402i)15-s + (0.845 + 0.534i)17-s + (−0.866 + 0.5i)19-s + (0.464 − 0.885i)21-s + (−0.5 + 0.866i)23-s + (0.970 + 0.239i)25-s + (0.970 − 0.239i)27-s + (−0.632 − 0.774i)29-s + (0.239 + 0.970i)31-s + (−0.0804 + 0.996i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.601882175 + 0.01209188280i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.601882175 + 0.01209188280i\) |
\(L(1)\) |
\(\approx\) |
\(1.802789351 + 0.01957337311i\) |
\(L(1)\) |
\(\approx\) |
\(1.802789351 + 0.01957337311i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.996 - 0.0804i)T \) |
| 5 | \( 1 + (0.992 + 0.120i)T \) |
| 7 | \( 1 + (0.534 - 0.845i)T \) |
| 11 | \( 1 + (-0.160 + 0.987i)T \) |
| 17 | \( 1 + (0.845 + 0.534i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.632 - 0.774i)T \) |
| 31 | \( 1 + (0.239 + 0.970i)T \) |
| 37 | \( 1 + (-0.960 - 0.278i)T \) |
| 41 | \( 1 + (-0.0804 - 0.996i)T \) |
| 43 | \( 1 + (0.278 + 0.960i)T \) |
| 47 | \( 1 + (-0.663 - 0.748i)T \) |
| 53 | \( 1 + (0.885 - 0.464i)T \) |
| 59 | \( 1 + (-0.391 - 0.919i)T \) |
| 61 | \( 1 + (-0.0402 - 0.999i)T \) |
| 67 | \( 1 + (-0.979 + 0.200i)T \) |
| 71 | \( 1 + (-0.903 - 0.428i)T \) |
| 73 | \( 1 + (-0.935 + 0.354i)T \) |
| 79 | \( 1 + (0.748 - 0.663i)T \) |
| 83 | \( 1 + (-0.822 - 0.568i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.600 + 0.799i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.41198259856927560549246079311, −21.71840004538181462352704347885, −21.042819081431949350040879803629, −20.607938857715427101295650563657, −19.40019898341646844440262629797, −18.59538017705896049817580279235, −18.14386673421359605995339259343, −16.91366040917124681518148460558, −16.14681808831014799194102588210, −15.06783845891943231434428287587, −14.45199815304961112687245512930, −13.6936957559512580038160594753, −12.96673220825601679213476648087, −11.9955177108837687063437575411, −10.7860124809333123243044384049, −9.96698355006616263481926355623, −8.92427608199666770685638073525, −8.59613915953055343513716230709, −7.51609878811565337259046689923, −6.26680351238929396589976237791, −5.42916841623183154283400178160, −4.42610807640367083034358144409, −3.0400284386303957517533035744, −2.38231900514296780293793287927, −1.35890526803457731785704632340,
1.56112695925019595303493767232, 1.991520104977219836133374577830, 3.36393693651655817469332012679, 4.26401557263845198480352533298, 5.33643084471594602658497860411, 6.572358705805873411707211473744, 7.45258183992339363332444957285, 8.18696195944677110143593344986, 9.26637993611119165422018063835, 10.13350729473012153601312234795, 10.52607494850528096625168483462, 12.08482465572677727033706805982, 13.00302338526458588454848763650, 13.67271354744653647257662258052, 14.494408919489561863450440057882, 14.92859738846705464440215377727, 16.13368403397237743675675309122, 17.27971128114218614847860263793, 17.698982320007686588017318719870, 18.735444145163220785892353257776, 19.55792600465249939687336790396, 20.45490134618857774273817122658, 21.05386041563429412874193519572, 21.555541587767115856969752473600, 22.85066260617032419324221063205