L(s) = 1 | + (0.591 + 0.806i)3-s + (−0.685 − 0.728i)5-s + (−0.979 + 0.202i)7-s + (−0.301 + 0.953i)9-s + (0.742 − 0.670i)11-s + (0.0203 + 0.999i)13-s + (0.182 − 0.983i)15-s + (−0.841 + 0.540i)17-s + (0.339 − 0.940i)19-s + (−0.742 − 0.670i)21-s + (−0.0611 + 0.998i)25-s + (−0.947 + 0.320i)27-s + (0.999 − 0.0407i)31-s + (0.979 + 0.202i)33-s + (0.818 + 0.574i)35-s + ⋯ |
L(s) = 1 | + (0.591 + 0.806i)3-s + (−0.685 − 0.728i)5-s + (−0.979 + 0.202i)7-s + (−0.301 + 0.953i)9-s + (0.742 − 0.670i)11-s + (0.0203 + 0.999i)13-s + (0.182 − 0.983i)15-s + (−0.841 + 0.540i)17-s + (0.339 − 0.940i)19-s + (−0.742 − 0.670i)21-s + (−0.0611 + 0.998i)25-s + (−0.947 + 0.320i)27-s + (0.999 − 0.0407i)31-s + (0.979 + 0.202i)33-s + (0.818 + 0.574i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2668 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.114i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2668 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.114i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02207207418 + 0.3829447926i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02207207418 + 0.3829447926i\) |
\(L(1)\) |
\(\approx\) |
\(0.8372701146 + 0.2217779161i\) |
\(L(1)\) |
\(\approx\) |
\(0.8372701146 + 0.2217779161i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
| 29 | \( 1 \) |
good | 3 | \( 1 + (0.591 + 0.806i)T \) |
| 5 | \( 1 + (-0.685 - 0.728i)T \) |
| 7 | \( 1 + (-0.979 + 0.202i)T \) |
| 11 | \( 1 + (0.742 - 0.670i)T \) |
| 13 | \( 1 + (0.0203 + 0.999i)T \) |
| 17 | \( 1 + (-0.841 + 0.540i)T \) |
| 19 | \( 1 + (0.339 - 0.940i)T \) |
| 31 | \( 1 + (0.999 - 0.0407i)T \) |
| 37 | \( 1 + (0.301 - 0.953i)T \) |
| 41 | \( 1 + (-0.142 + 0.989i)T \) |
| 43 | \( 1 + (-0.999 - 0.0407i)T \) |
| 47 | \( 1 + (0.900 - 0.433i)T \) |
| 53 | \( 1 + (-0.970 - 0.242i)T \) |
| 59 | \( 1 + (-0.415 + 0.909i)T \) |
| 61 | \( 1 + (-0.882 + 0.470i)T \) |
| 67 | \( 1 + (0.742 + 0.670i)T \) |
| 71 | \( 1 + (-0.986 + 0.162i)T \) |
| 73 | \( 1 + (0.101 + 0.994i)T \) |
| 79 | \( 1 + (-0.768 + 0.639i)T \) |
| 83 | \( 1 + (-0.933 + 0.359i)T \) |
| 89 | \( 1 + (-0.182 - 0.983i)T \) |
| 97 | \( 1 + (-0.996 + 0.0815i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.89707135259828216263225366677, −18.50016580976720616916000540228, −17.63696156534438893266879349378, −17.00965992424936572523340837290, −15.82346237455287327904563995473, −15.41023873779176701504349296754, −14.6804161669461349928538958555, −13.91150327253876564846882995842, −13.339272687043695292968397763239, −12.33901025624889217006344365197, −12.121142666834979440281636943733, −11.118544160492114495033914723090, −10.16862726072670263369447598849, −9.57910384458392177930138203542, −8.671776799848715227861748607664, −7.830565697676508251303932952545, −7.28228670203163627805054643532, −6.536409461706550702688735362284, −6.099009564005445649241002952153, −4.65461122424235831235180232597, −3.67358595003159044255300264497, −3.15673214975844117111124820522, −2.41931919806314320097437975245, −1.286446397472752772307296104430, −0.11593096053982605073781146204,
1.2957784083793271792879579232, 2.51791532471861346536015658416, 3.30367492820127695114882540814, 4.13051025354777996085892163630, 4.50568601114163530235530171553, 5.59878054027792006353012805581, 6.49627288848755762074899339563, 7.29076323991360592185634565284, 8.42803335363342193523264223706, 8.85592559166041656490594308035, 9.36141393301444039094210234206, 10.14109348717567292885693556311, 11.27062900801367880136320432583, 11.58184032797663242868878797740, 12.63241531040438224012299444450, 13.37884447548014368049779145715, 13.93288699731691229616031191540, 14.89142370325772791346665962591, 15.607538056903709458344751896761, 16.01727536789741188304714860516, 16.72700545534520283595714309724, 17.182061275284094614454065174867, 18.5431032258608935592423437663, 19.31039083101406432732618549801, 19.72705827281373367333696978248