| L(s) = 1 | + (0.879 − 0.475i)2-s + (0.635 − 0.771i)3-s + (0.546 − 0.837i)4-s + (0.401 + 0.915i)5-s + (0.191 − 0.981i)6-s + (0.0825 − 0.996i)8-s + (−0.191 − 0.981i)9-s + (0.789 + 0.614i)10-s + (−0.754 − 0.656i)11-s + (−0.298 − 0.954i)12-s + (0.635 − 0.771i)13-s + (0.962 + 0.272i)15-s + (−0.401 − 0.915i)16-s + (0.998 − 0.0550i)17-s + (−0.635 − 0.771i)18-s + ⋯ |
| L(s) = 1 | + (0.879 − 0.475i)2-s + (0.635 − 0.771i)3-s + (0.546 − 0.837i)4-s + (0.401 + 0.915i)5-s + (0.191 − 0.981i)6-s + (0.0825 − 0.996i)8-s + (−0.191 − 0.981i)9-s + (0.789 + 0.614i)10-s + (−0.754 − 0.656i)11-s + (−0.298 − 0.954i)12-s + (0.635 − 0.771i)13-s + (0.962 + 0.272i)15-s + (−0.401 − 0.915i)16-s + (0.998 − 0.0550i)17-s + (−0.635 − 0.771i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.469 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.469 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.088555993 - 3.474099783i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.088555993 - 3.474099783i\) |
| \(L(1)\) |
\(\approx\) |
\(1.903547923 - 1.320135040i\) |
| \(L(1)\) |
\(\approx\) |
\(1.903547923 - 1.320135040i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.879 - 0.475i)T \) |
| 3 | \( 1 + (0.635 - 0.771i)T \) |
| 5 | \( 1 + (0.401 + 0.915i)T \) |
| 11 | \( 1 + (-0.754 - 0.656i)T \) |
| 13 | \( 1 + (0.635 - 0.771i)T \) |
| 17 | \( 1 + (0.998 - 0.0550i)T \) |
| 23 | \( 1 + (0.635 + 0.771i)T \) |
| 29 | \( 1 + (0.998 - 0.0550i)T \) |
| 31 | \( 1 + (0.0275 + 0.999i)T \) |
| 37 | \( 1 + (0.191 - 0.981i)T \) |
| 41 | \( 1 + (0.716 - 0.697i)T \) |
| 43 | \( 1 + (-0.926 - 0.376i)T \) |
| 47 | \( 1 + (0.754 + 0.656i)T \) |
| 53 | \( 1 + (-0.945 + 0.324i)T \) |
| 59 | \( 1 + (-0.962 - 0.272i)T \) |
| 61 | \( 1 + (0.821 - 0.569i)T \) |
| 67 | \( 1 + (0.0825 - 0.996i)T \) |
| 71 | \( 1 + (-0.904 + 0.426i)T \) |
| 73 | \( 1 + (0.998 - 0.0550i)T \) |
| 79 | \( 1 + (-0.789 + 0.614i)T \) |
| 83 | \( 1 + (0.401 - 0.915i)T \) |
| 89 | \( 1 + (-0.998 - 0.0550i)T \) |
| 97 | \( 1 + (-0.821 + 0.569i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.08791645020094121973156151345, −19.09312707720252852030178287619, −18.143691103302535064279389682846, −17.12369332925383534492414301614, −16.54724576048409514697470788075, −16.119338619462694413776458310099, −15.31597479643861031416955546773, −14.72154013632513782914182177026, −13.929720362809725839272454368053, −13.37627034914941066315149759655, −12.73578614460141455238243553364, −11.949915138523178076242361159413, −11.060458888739661686492846127152, −10.11662098562965580361787028430, −9.47402269722030268212802729414, −8.45611005451375393252817692520, −8.15671427722506522946631057685, −7.1570727598259037941371125860, −6.12924668282992729318702671866, −5.36250785226051197685407259810, −4.61268206759692341332104886148, −4.24736088703538980211556844186, −3.14029942742585672830160951258, −2.42500828183583483891114626576, −1.44983751079346330884523269629,
0.85785674965402222709956459474, 1.708772779508524915646656845358, 2.76590982544578650266821370678, 3.10495594002760676928393784719, 3.76748170964863604324047627742, 5.23616667542481087279432270550, 5.82257021992715176866278862090, 6.51018371885422586677494820126, 7.35622397532460903953299002538, 7.98544972578965022462916116794, 9.0667879362466425880732175704, 9.96211755247017160373126386591, 10.69505500148638472670303910993, 11.230770722664010456114571753200, 12.2590063925054362689246345589, 12.814894652440645201759604528405, 13.61574389995915780610873236878, 14.008123278414992781838817205056, 14.60754745889291542782797836866, 15.481723731255829729907145117170, 15.92130026451828332976836372686, 17.3099046295712103664996787938, 18.095454617316989342069350902719, 18.69185348561553335897463269144, 19.185993029700157674445800159850