L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.866 + 0.5i)11-s + i·17-s − i·19-s + (−0.866 − 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.866 + 0.5i)31-s + 37-s + (0.866 + 0.5i)41-s + (−0.866 + 0.5i)43-s + (−0.5 − 0.866i)47-s + (−0.5 + 0.866i)49-s + i·53-s + (−0.866 − 0.5i)59-s + (−0.5 − 0.866i)61-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.866 + 0.5i)11-s + i·17-s − i·19-s + (−0.866 − 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.866 + 0.5i)31-s + 37-s + (0.866 + 0.5i)41-s + (−0.866 + 0.5i)43-s + (−0.5 − 0.866i)47-s + (−0.5 + 0.866i)49-s + i·53-s + (−0.866 − 0.5i)59-s + (−0.5 − 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.905 + 0.424i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.905 + 0.424i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1851119471 + 0.8306093460i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1851119471 + 0.8306093460i\) |
\(L(1)\) |
\(\approx\) |
\(0.8839735949 + 0.2661213965i\) |
\(L(1)\) |
\(\approx\) |
\(0.8839735949 + 0.2661213965i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.866 + 0.5i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 + (-0.866 - 0.5i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.460392516653396035861176193265, −18.30429721652552449228602349334, −18.04236045077257970388340897666, −17.143473655265168236396164409473, −16.39868867904423674225844871492, −15.79861898416116258659277834453, −14.99470284866296393268381558685, −14.08944544096971637350353549060, −13.56292311650711677319681196414, −12.99275699354821554770061477686, −11.87525096544317449781566609909, −11.22368951152021668245576834895, −10.63000543521173052314610034981, −9.80398052565587384801002953324, −9.02735852567861210673664899695, −8.02050188286179195102234731918, −7.54673885918080600259816728571, −6.73956774329365573800665445244, −5.73321219830397928359453253141, −4.93297415602182387920098255363, −4.26374179582118006816448369606, −3.22216592521777682372424262942, −2.45380418483377108576545597906, −1.30603219031549237560450915617, −0.272604562850733653481663475588,
1.46885894943458690384577442130, 2.19443946507357258911468199877, 3.02175806909497465820097210909, 4.1812960856101244702280923337, 4.82702660046053061952308972607, 5.872537116012152025990810666445, 6.21134570173056054582447314637, 7.58741837460807614834716753967, 8.076250445060005514976190589489, 8.72887700601593184826160241785, 9.83043312325685566436201582632, 10.286916096293521698886224646919, 11.249298565349805563620861222683, 11.98819803429686915263287324056, 12.63266666136444382434583014040, 13.28655610700709987511040398293, 14.35579403164885171161940134306, 14.86401305398528295819113264449, 15.559553498468918482813415297568, 16.23824345015706867214683393331, 17.14157455571341024461027674580, 17.84517959313130403229187435810, 18.50841022346554241655932368567, 18.98495961977444772148576046327, 20.0240036131470532488892233810