L(s) = 1 | + (−0.997 + 0.0747i)2-s + (0.988 − 0.149i)4-s + (−0.974 + 0.222i)8-s + (0.900 + 0.433i)11-s + (−0.997 + 0.0747i)13-s + (0.955 − 0.294i)16-s + (0.149 − 0.988i)17-s + (0.5 − 0.866i)19-s + (−0.930 − 0.365i)22-s + (0.781 − 0.623i)23-s + (0.988 − 0.149i)26-s + (0.365 + 0.930i)29-s + (−0.5 + 0.866i)31-s + (−0.930 + 0.365i)32-s + (−0.0747 + 0.997i)34-s + ⋯ |
L(s) = 1 | + (−0.997 + 0.0747i)2-s + (0.988 − 0.149i)4-s + (−0.974 + 0.222i)8-s + (0.900 + 0.433i)11-s + (−0.997 + 0.0747i)13-s + (0.955 − 0.294i)16-s + (0.149 − 0.988i)17-s + (0.5 − 0.866i)19-s + (−0.930 − 0.365i)22-s + (0.781 − 0.623i)23-s + (0.988 − 0.149i)26-s + (0.365 + 0.930i)29-s + (−0.5 + 0.866i)31-s + (−0.930 + 0.365i)32-s + (−0.0747 + 0.997i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.644 - 0.764i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.644 - 0.764i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8794483321 - 0.4089797324i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8794483321 - 0.4089797324i\) |
\(L(1)\) |
\(\approx\) |
\(0.7329765985 - 0.05731089500i\) |
\(L(1)\) |
\(\approx\) |
\(0.7329765985 - 0.05731089500i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.997 + 0.0747i)T \) |
| 11 | \( 1 + (0.900 + 0.433i)T \) |
| 13 | \( 1 + (-0.997 + 0.0747i)T \) |
| 17 | \( 1 + (0.149 - 0.988i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.781 - 0.623i)T \) |
| 29 | \( 1 + (0.365 + 0.930i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.930 - 0.365i)T \) |
| 41 | \( 1 + (0.733 - 0.680i)T \) |
| 43 | \( 1 + (0.680 - 0.733i)T \) |
| 47 | \( 1 + (-0.997 + 0.0747i)T \) |
| 53 | \( 1 + (-0.930 - 0.365i)T \) |
| 59 | \( 1 + (-0.733 - 0.680i)T \) |
| 61 | \( 1 + (-0.988 - 0.149i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.623 - 0.781i)T \) |
| 73 | \( 1 + (-0.563 + 0.826i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.997 - 0.0747i)T \) |
| 89 | \( 1 + (0.0747 - 0.997i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.4940302094060745881843116357, −19.3199163274188345977458442256, −18.41122037429425186754615708124, −17.62528412937300846123335031271, −16.880444349558301929418265890944, −16.64251916988655014997901232796, −15.575906673466905622352761051, −14.84663210790416341847437781638, −14.31195860188269474505001522245, −13.09934755798902557250521192569, −12.36266741505998573980889385623, −11.59288429175736446319934202838, −11.06704266100497409525174729669, −10.03078588999018509784386571123, −9.56582299789524092881702222225, −8.82930098136917455424160177853, −7.81554568691330736464604434707, −7.5167702932842287842548958390, −6.2480286489777705280808750797, −5.96227555249450866832612476064, −4.60975368532359469559524171168, −3.585549703312550776279185764612, −2.79211915540413535768745073247, −1.740696440093166458718432753728, −0.96445716217359411373124331837,
0.54800473167562991624142238552, 1.541481082923278984305314468753, 2.54863197620785994306178399114, 3.23272672945976044589760893715, 4.593565991423920262938876708937, 5.29421386782483071647817570776, 6.46228297669725006561506919420, 7.113676005850958249284649357319, 7.549972362518970563712736675, 8.760376900425520983271690100366, 9.26549949036559907662884922899, 9.83203306240750835979647215132, 10.80228621616505172525227367618, 11.42949179092065268732888123641, 12.217094316663929100391392292129, 12.793078487645599699840241307532, 14.25689282801090860108219128279, 14.49096644964701125889752061009, 15.51246111705945139042043753359, 16.14682152514588593248051142287, 16.89404510041967858739388276995, 17.49669661413460031955262979580, 18.12150939762823608261026843593, 18.873344499708635697909311257281, 19.74474747698765962853052714249