| L(s) = 1 | + (−0.149 − 0.988i)3-s + (−0.955 + 0.294i)9-s + (0.955 + 0.294i)11-s + (−0.974 + 0.222i)13-s + (−0.563 − 0.826i)17-s + (0.5 + 0.866i)19-s + (0.563 − 0.826i)23-s + (0.433 + 0.900i)27-s + (−0.900 − 0.433i)29-s + (0.5 − 0.866i)31-s + (0.149 − 0.988i)33-s + (−0.997 + 0.0747i)37-s + (0.365 + 0.930i)39-s + (0.623 + 0.781i)41-s + (0.781 + 0.623i)43-s + ⋯ |
| L(s) = 1 | + (−0.149 − 0.988i)3-s + (−0.955 + 0.294i)9-s + (0.955 + 0.294i)11-s + (−0.974 + 0.222i)13-s + (−0.563 − 0.826i)17-s + (0.5 + 0.866i)19-s + (0.563 − 0.826i)23-s + (0.433 + 0.900i)27-s + (−0.900 − 0.433i)29-s + (0.5 − 0.866i)31-s + (0.149 − 0.988i)33-s + (−0.997 + 0.0747i)37-s + (0.365 + 0.930i)39-s + (0.623 + 0.781i)41-s + (0.781 + 0.623i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.831 - 0.556i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.831 - 0.556i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2734920007 - 0.9003735408i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2734920007 - 0.9003735408i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8197972285 - 0.3595405642i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8197972285 - 0.3595405642i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (-0.149 - 0.988i)T \) |
| 11 | \( 1 + (0.955 + 0.294i)T \) |
| 13 | \( 1 + (-0.974 + 0.222i)T \) |
| 17 | \( 1 + (-0.563 - 0.826i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.563 - 0.826i)T \) |
| 29 | \( 1 + (-0.900 - 0.433i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.997 + 0.0747i)T \) |
| 41 | \( 1 + (0.623 + 0.781i)T \) |
| 43 | \( 1 + (0.781 + 0.623i)T \) |
| 47 | \( 1 + (-0.680 - 0.733i)T \) |
| 53 | \( 1 + (-0.997 - 0.0747i)T \) |
| 59 | \( 1 + (-0.365 - 0.930i)T \) |
| 61 | \( 1 + (-0.0747 - 0.997i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.900 - 0.433i)T \) |
| 73 | \( 1 + (0.680 - 0.733i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.974 - 0.222i)T \) |
| 89 | \( 1 + (-0.955 + 0.294i)T \) |
| 97 | \( 1 - iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.18059318993495352253401542395, −19.683681719198443999490878328319, −19.108316688446407834879362683596, −17.74477772286375862918534191444, −17.30589092130786845754285124437, −16.777534250393097858574128355536, −15.71021107283113045070428126526, −15.372126876119512527327752701407, −14.43956286595548321327236998348, −13.96580833747948060211692609510, −12.83107376983656633079950541930, −12.05835667251709217907593759831, −11.22605220182440485501264582323, −10.73207185909388494122120395944, −9.75023367629515110169750630029, −9.16466377839948838190775334786, −8.56203671976549743335551914888, −7.388132260612691769311162765223, −6.61469083502203269803781249350, −5.612615875670818014792553189848, −4.98597813613852438557752654166, −4.08791173770849722209618612926, −3.382078928658827350412904817481, −2.46453558685771519570960172300, −1.16986838554856557824380813315,
0.34902140649029950387241038627, 1.533596749236149255028073618592, 2.286086241905071093066647918184, 3.21002505176831909674063370117, 4.38688155533076055375375010789, 5.18130164948182987151349777375, 6.19866451362383279700920291979, 6.812582685137353184026413192968, 7.51682232096377901602708605956, 8.251948223176006964779294976860, 9.285366598428830977699170282858, 9.79448260976411990169611823033, 11.10345618771063830924337066670, 11.60529367141937536667325369803, 12.3729383733706978895893063482, 12.903053912083512908754236062293, 13.94023155767785472371837641950, 14.35999331605213649541900692156, 15.14474847117338792876074179456, 16.26277666007983393354424361123, 17.007403865523796120336447785852, 17.42933512848806363715724400516, 18.36601432071654617933633593923, 18.90932103085238401512639146871, 19.632530990921878296384189413792