L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (−0.406 − 0.913i)12-s + (−0.587 + 0.809i)13-s + (0.913 − 0.406i)16-s + (0.743 + 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.994 − 0.104i)23-s + (−0.5 − 0.866i)24-s + (−0.5 + 0.866i)26-s + (0.587 + 0.809i)27-s + ⋯ |
L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (−0.406 − 0.913i)12-s + (−0.587 + 0.809i)13-s + (0.913 − 0.406i)16-s + (0.743 + 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.994 − 0.104i)23-s + (−0.5 − 0.866i)24-s + (−0.5 + 0.866i)26-s + (0.587 + 0.809i)27-s + ⋯ |
Λ(s)=(=(1925s/2ΓR(s)L(s)(0.103−0.994i)Λ(1−s)
Λ(s)=(=(1925s/2ΓR(s)L(s)(0.103−0.994i)Λ(1−s)
Degree: |
1 |
Conductor: |
1925
= 52⋅7⋅11
|
Sign: |
0.103−0.994i
|
Analytic conductor: |
8.93966 |
Root analytic conductor: |
8.93966 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1925(1033,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1925, (0: ), 0.103−0.994i)
|
Particular Values
L(21) |
≈ |
2.164386496−1.949887336i |
L(21) |
≈ |
2.164386496−1.949887336i |
L(1) |
≈ |
1.686199655−0.7351479766i |
L(1) |
≈ |
1.686199655−0.7351479766i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.994−0.104i)T |
| 3 | 1+(−0.207−0.978i)T |
| 13 | 1+(−0.587+0.809i)T |
| 17 | 1+(0.743+0.669i)T |
| 19 | 1+(−0.978−0.207i)T |
| 23 | 1+(0.994−0.104i)T |
| 29 | 1+(0.309−0.951i)T |
| 31 | 1+(0.669−0.743i)T |
| 37 | 1+(−0.406−0.913i)T |
| 41 | 1+(0.809+0.587i)T |
| 43 | 1−iT |
| 47 | 1+(0.743−0.669i)T |
| 53 | 1+(−0.207−0.978i)T |
| 59 | 1+(0.104−0.994i)T |
| 61 | 1+(0.104+0.994i)T |
| 67 | 1+(−0.743−0.669i)T |
| 71 | 1+(0.309−0.951i)T |
| 73 | 1+(0.406−0.913i)T |
| 79 | 1+(0.669+0.743i)T |
| 83 | 1+(0.951−0.309i)T |
| 89 | 1+(0.104+0.994i)T |
| 97 | 1+(−0.951−0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.53806031850539937815217403991, −19.74319420899418285608077445158, −18.99463621724670069196213517271, −17.67023259405825577288968033367, −17.07972430196664508751888039144, −16.379015939889594804868352240921, −15.6884626150529680468995135075, −15.03811428359157793929279621493, −14.461114717614812930135059180117, −13.77457618789232237882719067328, −12.6564488450134369508455237544, −12.23225164509372029696359350782, −11.283731230714105944816689931664, −10.60336892158621059427183616862, −10.03562490147658351129951520289, −8.9891041005939561018672654763, −8.07137642883569443017714125761, −7.15837749079534678568893520884, −6.26648443634155396035648418574, −5.41041326489041928883686294594, −4.88513455408097688694693903841, −4.12812932671802790783432033706, −3.072713324541942694174306557716, −2.7252919434405853086593908029, −1.14431321301914929427559972403,
0.79649706959103490840490806954, 1.979709995228307225986144333950, 2.44284503063718747404194193427, 3.57661537441738653281939759967, 4.50175240724650657140987058759, 5.34503544608967806790919775481, 6.18968497848497632093865723952, 6.74478451249524153927410621979, 7.536932174357441833159607599302, 8.28234451768059746560570057011, 9.407205785649753792070783799572, 10.52878468369261817241075769672, 11.14375506085641221218862735437, 12.06201892316098629410320954108, 12.380364520275232707319269105067, 13.2778514694882312317396790050, 13.77808336755639310811970203329, 14.68823592876277779396002280109, 15.09561469353460013160922677769, 16.2969307489255705687004235584, 16.96484718310403906675857722934, 17.46901626748918915069155289063, 18.74366971320351347953461143355, 19.28434553585982859258396964900, 19.634146331213860281713786508468