Properties

Label 1-175-175.17-r0-0-0
Degree 11
Conductor 175175
Sign 0.3880.921i0.388 - 0.921i
Analytic cond. 0.8126960.812696
Root an. cond. 0.8126960.812696
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)12-s + (0.587 − 0.809i)13-s + (0.913 − 0.406i)16-s + (−0.743 − 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.951 + 0.309i)22-s + (−0.994 + 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯
L(s)  = 1  + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)12-s + (0.587 − 0.809i)13-s + (0.913 − 0.406i)16-s + (−0.743 − 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.951 + 0.309i)22-s + (−0.994 + 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯

Functional equation

Λ(s)=(175s/2ΓR(s)L(s)=((0.3880.921i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(175s/2ΓR(s)L(s)=((0.3880.921i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 175175    =    5275^{2} \cdot 7
Sign: 0.3880.921i0.388 - 0.921i
Analytic conductor: 0.8126960.812696
Root analytic conductor: 0.8126960.812696
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ175(17,)\chi_{175} (17, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 175, (0: ), 0.3880.921i)(1,\ 175,\ (0:\ ),\ 0.388 - 0.921i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.6222629361.076558827i1.622262936 - 1.076558827i
L(12)L(\frac12) \approx 1.6222629361.076558827i1.622262936 - 1.076558827i
L(1)L(1) \approx 1.6016624600.6539822273i1.601662460 - 0.6539822273i
L(1)L(1) \approx 1.6016624600.6539822273i1.601662460 - 0.6539822273i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
7 1 1
good2 1+(0.9940.104i)T 1 + (0.994 - 0.104i)T
3 1+(0.2070.978i)T 1 + (-0.207 - 0.978i)T
11 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
13 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
17 1+(0.7430.669i)T 1 + (-0.743 - 0.669i)T
19 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
23 1+(0.994+0.104i)T 1 + (-0.994 + 0.104i)T
29 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
31 1+(0.669+0.743i)T 1 + (-0.669 + 0.743i)T
37 1+(0.406+0.913i)T 1 + (0.406 + 0.913i)T
41 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
43 1iT 1 - iT
47 1+(0.7430.669i)T 1 + (0.743 - 0.669i)T
53 1+(0.207+0.978i)T 1 + (0.207 + 0.978i)T
59 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
61 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
67 1+(0.743+0.669i)T 1 + (0.743 + 0.669i)T
71 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
73 1+(0.406+0.913i)T 1 + (-0.406 + 0.913i)T
79 1+(0.6690.743i)T 1 + (-0.669 - 0.743i)T
83 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
89 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
97 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.77332734851394612391270221806, −26.43981851684892310579990698610, −25.78877614689738613762496553431, −24.54766949495987636823579268791, −23.62424961427545982395771168502, −22.65555740588279604534685325072, −21.83268988252082322401633078208, −21.20437542279881815039049465405, −20.17953144806403465843382806772, −19.21828643428559335371413230914, −17.38909896280172437875288887897, −16.558723918612264673982276856581, −15.73704215752963463604155242110, −14.708991889890398521364389528600, −13.9906726458829724062442998849, −12.681400094339154228074769292148, −11.44447525004338929281851780551, −10.90005366707380983605721963775, −9.463849540677412573358013156082, −8.25284061840417407082857916319, −6.473559138889382535053967595726, −5.83831038912194003797033020766, −4.21520453607459295203339616932, −3.88387946647996014683402750953, −2.13336330704012186958834216368, 1.43642388269789115363961812586, 2.67592315325194079098662624161, 4.11976989428970752676873095570, 5.51214757196895842820335794515, 6.50169915624328710377262245649, 7.35105609223963695918850271325, 8.730558833499094589602342491991, 10.53216853848234194297556380271, 11.51929343600920080356358040888, 12.41743828273156903158748381833, 13.25220945427561624782425208505, 14.15567163137230452508387368356, 15.16440745761473664792411197536, 16.39138637149834911057030969706, 17.49451612741983702981751359072, 18.54022270004292536920399830291, 19.87852429752722903903150996182, 20.214131136231375976169264647105, 21.79091450832429806021053302686, 22.574740555837861093888402476149, 23.40104561021293856275456033584, 24.233923453539475173180816751069, 25.18027776537632695594293916608, 25.71455198325650495708558404887, 27.57879128872932669200752536475

Graph of the ZZ-function along the critical line