L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)12-s + (0.587 − 0.809i)13-s + (0.913 − 0.406i)16-s + (−0.743 − 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.951 + 0.309i)22-s + (−0.994 + 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)12-s + (0.587 − 0.809i)13-s + (0.913 − 0.406i)16-s + (−0.743 − 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.951 + 0.309i)22-s + (−0.994 + 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯ |
Λ(s)=(=(175s/2ΓR(s)L(s)(0.388−0.921i)Λ(1−s)
Λ(s)=(=(175s/2ΓR(s)L(s)(0.388−0.921i)Λ(1−s)
Degree: |
1 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.388−0.921i
|
Analytic conductor: |
0.812696 |
Root analytic conductor: |
0.812696 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 175, (0: ), 0.388−0.921i)
|
Particular Values
L(21) |
≈ |
1.622262936−1.076558827i |
L(21) |
≈ |
1.622262936−1.076558827i |
L(1) |
≈ |
1.601662460−0.6539822273i |
L(1) |
≈ |
1.601662460−0.6539822273i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+(0.994−0.104i)T |
| 3 | 1+(−0.207−0.978i)T |
| 11 | 1+(0.913+0.406i)T |
| 13 | 1+(0.587−0.809i)T |
| 17 | 1+(−0.743−0.669i)T |
| 19 | 1+(−0.978−0.207i)T |
| 23 | 1+(−0.994+0.104i)T |
| 29 | 1+(−0.309+0.951i)T |
| 31 | 1+(−0.669+0.743i)T |
| 37 | 1+(0.406+0.913i)T |
| 41 | 1+(0.809+0.587i)T |
| 43 | 1−iT |
| 47 | 1+(0.743−0.669i)T |
| 53 | 1+(0.207+0.978i)T |
| 59 | 1+(−0.104+0.994i)T |
| 61 | 1+(0.104+0.994i)T |
| 67 | 1+(0.743+0.669i)T |
| 71 | 1+(0.309−0.951i)T |
| 73 | 1+(−0.406+0.913i)T |
| 79 | 1+(−0.669−0.743i)T |
| 83 | 1+(−0.951+0.309i)T |
| 89 | 1+(−0.104−0.994i)T |
| 97 | 1+(−0.951−0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.77332734851394612391270221806, −26.43981851684892310579990698610, −25.78877614689738613762496553431, −24.54766949495987636823579268791, −23.62424961427545982395771168502, −22.65555740588279604534685325072, −21.83268988252082322401633078208, −21.20437542279881815039049465405, −20.17953144806403465843382806772, −19.21828643428559335371413230914, −17.38909896280172437875288887897, −16.558723918612264673982276856581, −15.73704215752963463604155242110, −14.708991889890398521364389528600, −13.9906726458829724062442998849, −12.681400094339154228074769292148, −11.44447525004338929281851780551, −10.90005366707380983605721963775, −9.463849540677412573358013156082, −8.25284061840417407082857916319, −6.473559138889382535053967595726, −5.83831038912194003797033020766, −4.21520453607459295203339616932, −3.88387946647996014683402750953, −2.13336330704012186958834216368,
1.43642388269789115363961812586, 2.67592315325194079098662624161, 4.11976989428970752676873095570, 5.51214757196895842820335794515, 6.50169915624328710377262245649, 7.35105609223963695918850271325, 8.730558833499094589602342491991, 10.53216853848234194297556380271, 11.51929343600920080356358040888, 12.41743828273156903158748381833, 13.25220945427561624782425208505, 14.15567163137230452508387368356, 15.16440745761473664792411197536, 16.39138637149834911057030969706, 17.49451612741983702981751359072, 18.54022270004292536920399830291, 19.87852429752722903903150996182, 20.214131136231375976169264647105, 21.79091450832429806021053302686, 22.574740555837861093888402476149, 23.40104561021293856275456033584, 24.233923453539475173180816751069, 25.18027776537632695594293916608, 25.71455198325650495708558404887, 27.57879128872932669200752536475