L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)12-s + (0.587 − 0.809i)13-s + (0.913 − 0.406i)16-s + (−0.743 − 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.951 + 0.309i)22-s + (−0.994 + 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 − 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (0.951 − 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)12-s + (0.587 − 0.809i)13-s + (0.913 − 0.406i)16-s + (−0.743 − 0.669i)17-s + (−0.866 + 0.5i)18-s + (−0.978 − 0.207i)19-s + (0.951 + 0.309i)22-s + (−0.994 + 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.622262936 - 1.076558827i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.622262936 - 1.076558827i\) |
\(L(1)\) |
\(\approx\) |
\(1.601662460 - 0.6539822273i\) |
\(L(1)\) |
\(\approx\) |
\(1.601662460 - 0.6539822273i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.994 - 0.104i)T \) |
| 3 | \( 1 + (-0.207 - 0.978i)T \) |
| 11 | \( 1 + (0.913 + 0.406i)T \) |
| 13 | \( 1 + (0.587 - 0.809i)T \) |
| 17 | \( 1 + (-0.743 - 0.669i)T \) |
| 19 | \( 1 + (-0.978 - 0.207i)T \) |
| 23 | \( 1 + (-0.994 + 0.104i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.669 + 0.743i)T \) |
| 37 | \( 1 + (0.406 + 0.913i)T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.743 - 0.669i)T \) |
| 53 | \( 1 + (0.207 + 0.978i)T \) |
| 59 | \( 1 + (-0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.104 + 0.994i)T \) |
| 67 | \( 1 + (0.743 + 0.669i)T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.406 + 0.913i)T \) |
| 79 | \( 1 + (-0.669 - 0.743i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (-0.104 - 0.994i)T \) |
| 97 | \( 1 + (-0.951 - 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.77332734851394612391270221806, −26.43981851684892310579990698610, −25.78877614689738613762496553431, −24.54766949495987636823579268791, −23.62424961427545982395771168502, −22.65555740588279604534685325072, −21.83268988252082322401633078208, −21.20437542279881815039049465405, −20.17953144806403465843382806772, −19.21828643428559335371413230914, −17.38909896280172437875288887897, −16.558723918612264673982276856581, −15.73704215752963463604155242110, −14.708991889890398521364389528600, −13.9906726458829724062442998849, −12.681400094339154228074769292148, −11.44447525004338929281851780551, −10.90005366707380983605721963775, −9.463849540677412573358013156082, −8.25284061840417407082857916319, −6.473559138889382535053967595726, −5.83831038912194003797033020766, −4.21520453607459295203339616932, −3.88387946647996014683402750953, −2.13336330704012186958834216368,
1.43642388269789115363961812586, 2.67592315325194079098662624161, 4.11976989428970752676873095570, 5.51214757196895842820335794515, 6.50169915624328710377262245649, 7.35105609223963695918850271325, 8.730558833499094589602342491991, 10.53216853848234194297556380271, 11.51929343600920080356358040888, 12.41743828273156903158748381833, 13.25220945427561624782425208505, 14.15567163137230452508387368356, 15.16440745761473664792411197536, 16.39138637149834911057030969706, 17.49451612741983702981751359072, 18.54022270004292536920399830291, 19.87852429752722903903150996182, 20.214131136231375976169264647105, 21.79091450832429806021053302686, 22.574740555837861093888402476149, 23.40104561021293856275456033584, 24.233923453539475173180816751069, 25.18027776537632695594293916608, 25.71455198325650495708558404887, 27.57879128872932669200752536475