| L(s) = 1 | + (−0.743 + 0.669i)2-s + (0.104 − 0.994i)4-s + (0.866 + 0.5i)7-s + (0.587 + 0.809i)8-s + (−0.669 − 0.743i)11-s + (0.743 + 0.669i)13-s + (−0.978 + 0.207i)14-s + (−0.978 − 0.207i)16-s + (−0.587 − 0.809i)17-s + (0.809 − 0.587i)19-s + (0.994 + 0.104i)22-s + (0.207 + 0.978i)23-s − 26-s + (0.587 − 0.809i)28-s + (0.913 − 0.406i)29-s + ⋯ |
| L(s) = 1 | + (−0.743 + 0.669i)2-s + (0.104 − 0.994i)4-s + (0.866 + 0.5i)7-s + (0.587 + 0.809i)8-s + (−0.669 − 0.743i)11-s + (0.743 + 0.669i)13-s + (−0.978 + 0.207i)14-s + (−0.978 − 0.207i)16-s + (−0.587 − 0.809i)17-s + (0.809 − 0.587i)19-s + (0.994 + 0.104i)22-s + (0.207 + 0.978i)23-s − 26-s + (0.587 − 0.809i)28-s + (0.913 − 0.406i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.752 + 0.658i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.752 + 0.658i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8488185722 + 0.3190499260i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8488185722 + 0.3190499260i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8069968675 + 0.2230928026i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8069968675 + 0.2230928026i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (-0.743 + 0.669i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.669 - 0.743i)T \) |
| 13 | \( 1 + (0.743 + 0.669i)T \) |
| 17 | \( 1 + (-0.587 - 0.809i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.207 + 0.978i)T \) |
| 29 | \( 1 + (0.913 - 0.406i)T \) |
| 31 | \( 1 + (0.913 + 0.406i)T \) |
| 37 | \( 1 + (0.951 - 0.309i)T \) |
| 41 | \( 1 + (-0.669 + 0.743i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.406 + 0.913i)T \) |
| 53 | \( 1 + (-0.587 + 0.809i)T \) |
| 59 | \( 1 + (0.669 - 0.743i)T \) |
| 61 | \( 1 + (0.669 + 0.743i)T \) |
| 67 | \( 1 + (0.406 - 0.913i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (0.951 + 0.309i)T \) |
| 79 | \( 1 + (-0.913 + 0.406i)T \) |
| 83 | \( 1 + (-0.994 + 0.104i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.406 - 0.913i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.573357921319956888104169758400, −25.61112202021257739031955204967, −24.67661813357238384456935341989, −23.46739353447272143020886622286, −22.508731727117822742412326710598, −21.33190083725166729379383737242, −20.52010484070339297869414340126, −20.026622639302535484677092385794, −18.63036660283134107440648947468, −17.94489840870123483508937957754, −17.20306438838390325280312257386, −16.06650551529967666728130693520, −14.99405836973275149028665645408, −13.61417549248842427420108825016, −12.71688005382186328814759277765, −11.62689463729192156401738683386, −10.61299537798038907819971974342, −10.02370941946089512510273479599, −8.46763091242634646143115507595, −7.94138276088451450628678803952, −6.69415215200493485188972893412, −4.94631876130650044531690961900, −3.79733573301774598821493468957, −2.39568737288646232819733855082, −1.137449416942544325269671568944,
1.198118421616263862566927518756, 2.67265698853906132271029857330, 4.689731308772326876394281408664, 5.608576458488204299131445697919, 6.76549618523614116085378915575, 7.949846682062670751026547555119, 8.71507738296361294719651365974, 9.695970106940171252597418750739, 11.09601406526017012321322889569, 11.57943539177267406180939125434, 13.52497078600676611916530561619, 14.14513688298670492412968059384, 15.54196034994034175073999214694, 15.90718312752746719024994049732, 17.19763987927005146517534965354, 18.125382125034100114188491642015, 18.66656090130776283851424588541, 19.808828094044789660174396473591, 20.88812568613565826973626152519, 21.79396123589173299128368567532, 23.22909464538177409993989647430, 23.946775703294683196541787200542, 24.75388453571320313882840460910, 25.57985645764414420304473704635, 26.77565013011698301534395173008