| L(s) = 1 | + (0.978 − 0.207i)2-s + (0.913 − 0.406i)4-s + (0.5 + 0.866i)7-s + (0.809 − 0.587i)8-s + (−0.978 + 0.207i)11-s + (0.978 + 0.207i)13-s + (0.669 + 0.743i)14-s + (0.669 − 0.743i)16-s + (0.809 − 0.587i)17-s + (−0.809 + 0.587i)19-s + (−0.913 + 0.406i)22-s + (−0.669 − 0.743i)23-s + 26-s + (0.809 + 0.587i)28-s + (−0.104 + 0.994i)29-s + ⋯ |
| L(s) = 1 | + (0.978 − 0.207i)2-s + (0.913 − 0.406i)4-s + (0.5 + 0.866i)7-s + (0.809 − 0.587i)8-s + (−0.978 + 0.207i)11-s + (0.978 + 0.207i)13-s + (0.669 + 0.743i)14-s + (0.669 − 0.743i)16-s + (0.809 − 0.587i)17-s + (−0.809 + 0.587i)19-s + (−0.913 + 0.406i)22-s + (−0.669 − 0.743i)23-s + 26-s + (0.809 + 0.587i)28-s + (−0.104 + 0.994i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.152i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.152i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.227527852 - 0.1713989270i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.227527852 - 0.1713989270i\) |
| \(L(1)\) |
\(\approx\) |
\(1.874091157 - 0.1358618973i\) |
| \(L(1)\) |
\(\approx\) |
\(1.874091157 - 0.1358618973i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (0.978 - 0.207i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.978 + 0.207i)T \) |
| 13 | \( 1 + (0.978 + 0.207i)T \) |
| 17 | \( 1 + (0.809 - 0.587i)T \) |
| 19 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + (-0.669 - 0.743i)T \) |
| 29 | \( 1 + (-0.104 + 0.994i)T \) |
| 31 | \( 1 + (-0.104 - 0.994i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-0.978 - 0.207i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.104 - 0.994i)T \) |
| 53 | \( 1 + (0.809 + 0.587i)T \) |
| 59 | \( 1 + (-0.978 - 0.207i)T \) |
| 61 | \( 1 + (-0.978 + 0.207i)T \) |
| 67 | \( 1 + (0.104 + 0.994i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.104 + 0.994i)T \) |
| 83 | \( 1 + (-0.913 - 0.406i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.104 - 0.994i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.03897136491226037676774981853, −25.65675817803862909916279804759, −24.2492633125115298564649317384, −23.56139389357684104248483199784, −23.07717484072513837509946315365, −21.68988083388098971046020077551, −21.01041976269108601113936418154, −20.263583963457667237479463640655, −19.11387073370537874553655678277, −17.746282765460630001339735655965, −16.83978269873922642369832256104, −15.815820188377794284769185631587, −15.004197326622375305625847201638, −13.78250176570877056037990826856, −13.32704674119186308782644321170, −12.123811775933070453420041101164, −10.957634917220210290295413038457, −10.33679758587847719503699067862, −8.34153949972900650431587744968, −7.60723950620741511400228386946, −6.35586832013527445325367600414, −5.31379701422909137367773132600, −4.18770361673608115276993489147, −3.16929563878063707523207682591, −1.61684382646092698714214547560,
1.74388715969531713783670614769, 2.8222814135519528702838161386, 4.15298540875972129641490526183, 5.3332202530960785454980289480, 6.080708125218848922014695713846, 7.50138729349211524432497934883, 8.61979869826562662651147104064, 10.15030146049059083142177274704, 11.07324816308424009570388766548, 12.09830739491347494610276023828, 12.868846825251335425413914896081, 13.99501127918951590484447024144, 14.86119822010646334153083864231, 15.75739008251360478775270166406, 16.599594759266644081448437521845, 18.29230436684800647833103169359, 18.779728900084754056502381246052, 20.25614759196960817180569182211, 21.00047439165012998101478322514, 21.611803049339896364909814698215, 22.7926375180368609796511167271, 23.50410704960000417484025860460, 24.40453100217360394505603728886, 25.338787686401911125683940308656, 26.083915862449681195507984437231