| L(s) = 1 | + (−0.916 + 0.400i)3-s + (0.220 − 0.975i)5-s + (0.734 − 0.678i)7-s + (0.678 − 0.734i)9-s + (−0.950 + 0.312i)11-s + (−0.429 + 0.902i)13-s + (0.189 + 0.981i)15-s + (−0.998 + 0.0475i)17-s + (0.987 + 0.158i)19-s + (−0.400 + 0.916i)21-s + (−0.204 + 0.978i)23-s + (−0.902 − 0.429i)25-s + (−0.327 + 0.945i)27-s + (−0.605 − 0.795i)29-s + (0.959 − 0.281i)31-s + ⋯ |
| L(s) = 1 | + (−0.916 + 0.400i)3-s + (0.220 − 0.975i)5-s + (0.734 − 0.678i)7-s + (0.678 − 0.734i)9-s + (−0.950 + 0.312i)11-s + (−0.429 + 0.902i)13-s + (0.189 + 0.981i)15-s + (−0.998 + 0.0475i)17-s + (0.987 + 0.158i)19-s + (−0.400 + 0.916i)21-s + (−0.204 + 0.978i)23-s + (−0.902 − 0.429i)25-s + (−0.327 + 0.945i)27-s + (−0.605 − 0.795i)29-s + (0.959 − 0.281i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.206i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.206i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03410535670 - 0.3266377844i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.03410535670 - 0.3266377844i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6865445443 - 0.1144713582i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6865445443 - 0.1144713582i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 397 | \( 1 \) |
| good | 3 | \( 1 + (-0.916 + 0.400i)T \) |
| 5 | \( 1 + (0.220 - 0.975i)T \) |
| 7 | \( 1 + (0.734 - 0.678i)T \) |
| 11 | \( 1 + (-0.950 + 0.312i)T \) |
| 13 | \( 1 + (-0.429 + 0.902i)T \) |
| 17 | \( 1 + (-0.998 + 0.0475i)T \) |
| 19 | \( 1 + (0.987 + 0.158i)T \) |
| 23 | \( 1 + (-0.204 + 0.978i)T \) |
| 29 | \( 1 + (-0.605 - 0.795i)T \) |
| 31 | \( 1 + (0.959 - 0.281i)T \) |
| 37 | \( 1 + (-0.444 - 0.895i)T \) |
| 41 | \( 1 + (-0.342 - 0.939i)T \) |
| 43 | \( 1 + (0.0475 - 0.998i)T \) |
| 47 | \( 1 + (0.266 - 0.963i)T \) |
| 53 | \( 1 + (-0.189 + 0.981i)T \) |
| 59 | \( 1 + (-0.993 + 0.110i)T \) |
| 61 | \( 1 + (0.429 + 0.902i)T \) |
| 67 | \( 1 + (-0.997 - 0.0634i)T \) |
| 71 | \( 1 + (-0.690 + 0.723i)T \) |
| 73 | \( 1 + (0.873 - 0.486i)T \) |
| 79 | \( 1 + (0.939 + 0.342i)T \) |
| 83 | \( 1 + (-0.888 + 0.458i)T \) |
| 89 | \( 1 + (-0.996 - 0.0792i)T \) |
| 97 | \( 1 + (-0.386 - 0.922i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.995625449343091878227931147538, −20.08944123210781053550373857341, −19.00743176621770338356568218617, −18.415902466177026340426082272548, −17.882227732965944815337611551719, −17.51544984545042189796612994698, −16.324763870529336121058580856425, −15.57325306629186838262377697949, −14.977725423826128332243403261408, −14.01575130831245054954109929667, −13.24999230580557691848382849754, −12.471644814715437679094103475265, −11.620673582260143494833917913325, −10.97563734145523473887007169284, −10.45817767229110833846291287697, −9.57142051683305777657529571164, −8.23007291346351625473489956879, −7.71944001713868363902505039699, −6.75726024680646902114233407258, −6.06341231431130549265823333358, −5.20915626957677901017603617737, −4.6934906677339419165665494484, −3.044469540508364737534369303705, −2.46413411429362400033327713042, −1.389593843732310658910190390062,
0.13868622908274276780761905248, 1.34287105620247213133295387993, 2.19266384675569326019171227526, 3.91200922390326352582815506099, 4.44874675791145610397783381511, 5.215656053708714535566995425230, 5.76648447794048427826440496735, 7.04752627180991586170914576831, 7.612429707870261004924840220502, 8.72816764350776777713128051454, 9.56093243024231458453862194128, 10.208765386718408334701653256437, 11.0757634601508437064592988881, 11.8032965365858835731382216453, 12.37563436747610735062492966927, 13.51592391486216071019545147318, 13.80562422743305662111988512206, 15.240237584335802433737897645593, 15.69506756303344610117722185513, 16.56254461641277826887618388612, 17.178885464400325378688357264332, 17.67559830238205980074645446550, 18.38642014547890275672749083209, 19.51578479481912770996536140762, 20.43600806333002986314659175800