L(s) = 1 | + (−0.969 − 0.244i)2-s + (−0.978 + 0.207i)3-s + (0.879 + 0.475i)4-s + (−0.870 − 0.491i)5-s + (0.999 + 0.0380i)6-s + (−0.935 + 0.353i)7-s + (−0.736 − 0.676i)8-s + (0.913 − 0.406i)9-s + (0.723 + 0.690i)10-s + (−0.959 − 0.281i)12-s + (0.993 − 0.113i)14-s + (0.953 + 0.299i)15-s + (0.548 + 0.836i)16-s + (0.820 + 0.572i)17-s + (−0.985 + 0.170i)18-s + (0.123 − 0.992i)19-s + ⋯ |
L(s) = 1 | + (−0.969 − 0.244i)2-s + (−0.978 + 0.207i)3-s + (0.879 + 0.475i)4-s + (−0.870 − 0.491i)5-s + (0.999 + 0.0380i)6-s + (−0.935 + 0.353i)7-s + (−0.736 − 0.676i)8-s + (0.913 − 0.406i)9-s + (0.723 + 0.690i)10-s + (−0.959 − 0.281i)12-s + (0.993 − 0.113i)14-s + (0.953 + 0.299i)15-s + (0.548 + 0.836i)16-s + (0.820 + 0.572i)17-s + (−0.985 + 0.170i)18-s + (0.123 − 0.992i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.780 - 0.624i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.780 - 0.624i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3411415785 - 0.1197106333i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3411415785 - 0.1197106333i\) |
\(L(1)\) |
\(\approx\) |
\(0.3949155555 - 0.04093184184i\) |
\(L(1)\) |
\(\approx\) |
\(0.3949155555 - 0.04093184184i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.969 - 0.244i)T \) |
| 3 | \( 1 + (-0.978 + 0.207i)T \) |
| 5 | \( 1 + (-0.870 - 0.491i)T \) |
| 7 | \( 1 + (-0.935 + 0.353i)T \) |
| 17 | \( 1 + (0.820 + 0.572i)T \) |
| 19 | \( 1 + (0.123 - 0.992i)T \) |
| 23 | \( 1 + (0.0475 - 0.998i)T \) |
| 29 | \( 1 + (-0.999 - 0.0190i)T \) |
| 31 | \( 1 + (0.941 + 0.336i)T \) |
| 37 | \( 1 + (-0.432 + 0.901i)T \) |
| 41 | \( 1 + (-0.0665 - 0.997i)T \) |
| 43 | \( 1 + (0.580 + 0.814i)T \) |
| 47 | \( 1 + (-0.985 - 0.170i)T \) |
| 53 | \( 1 + (-0.998 - 0.0570i)T \) |
| 59 | \( 1 + (-0.0665 + 0.997i)T \) |
| 61 | \( 1 + (-0.969 + 0.244i)T \) |
| 67 | \( 1 + (0.928 - 0.371i)T \) |
| 71 | \( 1 + (-0.683 + 0.730i)T \) |
| 73 | \( 1 + (-0.254 + 0.967i)T \) |
| 79 | \( 1 + (0.198 - 0.980i)T \) |
| 83 | \( 1 + (-0.362 + 0.931i)T \) |
| 89 | \( 1 + (0.981 + 0.189i)T \) |
| 97 | \( 1 + (0.00951 - 0.999i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.37159927465170565870389370497, −19.50030764336555437301497929858, −18.889404240976815738792904448285, −18.54649469291409515368391951607, −17.56029877930695318216765509588, −16.86292735358912511668767628447, −16.13818172157491282677644243306, −15.81784062425488261607035788665, −14.87925294007521512037636989315, −13.90635849956412838737487561152, −12.73066943362031943341016335908, −12.000922420993542621673359999965, −11.40326540883012701500144018264, −10.62487261727674582298171307869, −9.96047011754462515697147456008, −9.29672602369699231903444735201, −7.77197320638879592965243725443, −7.62799929422830807070127730602, −6.665088290907107784538217703624, −6.07430713473228197792678828594, −5.16090452209094695493698701097, −3.83390361300608881223964577248, −3.03737210272129912982863712875, −1.66159001227933182912227522495, −0.56887725931340380625314818595,
0.43257284000387779230318120009, 1.39773177510802436155941249384, 2.84753279492937436628572049518, 3.67185648965316893859352345844, 4.64796304628260758593948460689, 5.72763131589864739714039825126, 6.56595975955178089820633059937, 7.234490900607220085397376389744, 8.19802951751051871477759532724, 9.01773028260768538006121559250, 9.757627338428083567566218707987, 10.51368730771184334202719747376, 11.27253172551863277743194411250, 12.01983452874308366683451376015, 12.51290721173087470803205562190, 13.166047028163956973744565090189, 14.90342185104089081069647659981, 15.60185274286285343050651452074, 16.10086179780381991745197617921, 16.77381140040196832844399249182, 17.287004647045988805952347327326, 18.288471499472269543540365865125, 18.99616794397452319448924086027, 19.413229829759607854696800964238, 20.37402394355084378002924747445