| L(s) = 1 | + (0.723 − 0.690i)2-s + (0.0475 − 0.998i)4-s + (0.995 + 0.0950i)5-s + (−0.654 − 0.755i)8-s + (0.786 − 0.618i)10-s + (0.580 − 0.814i)11-s + (−0.654 + 0.755i)13-s + (−0.995 − 0.0950i)16-s + (−0.888 − 0.458i)17-s + (−0.235 + 0.971i)19-s + (0.142 − 0.989i)20-s + (−0.142 − 0.989i)22-s + (0.786 + 0.618i)23-s + (0.981 + 0.189i)25-s + (0.0475 + 0.998i)26-s + ⋯ |
| L(s) = 1 | + (0.723 − 0.690i)2-s + (0.0475 − 0.998i)4-s + (0.995 + 0.0950i)5-s + (−0.654 − 0.755i)8-s + (0.786 − 0.618i)10-s + (0.580 − 0.814i)11-s + (−0.654 + 0.755i)13-s + (−0.995 − 0.0950i)16-s + (−0.888 − 0.458i)17-s + (−0.235 + 0.971i)19-s + (0.142 − 0.989i)20-s + (−0.142 − 0.989i)22-s + (0.786 + 0.618i)23-s + (0.981 + 0.189i)25-s + (0.0475 + 0.998i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1407 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.391 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1407 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.391 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.216287754 + 0.8043988566i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.216287754 + 0.8043988566i\) |
| \(L(1)\) |
\(\approx\) |
\(1.388229604 - 0.4982800554i\) |
| \(L(1)\) |
\(\approx\) |
\(1.388229604 - 0.4982800554i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 67 | \( 1 \) |
| good | 2 | \( 1 + (0.723 - 0.690i)T \) |
| 5 | \( 1 + (0.995 + 0.0950i)T \) |
| 11 | \( 1 + (0.580 - 0.814i)T \) |
| 13 | \( 1 + (-0.654 + 0.755i)T \) |
| 17 | \( 1 + (-0.888 - 0.458i)T \) |
| 19 | \( 1 + (-0.235 + 0.971i)T \) |
| 23 | \( 1 + (0.786 + 0.618i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.327 + 0.945i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.841 + 0.540i)T \) |
| 43 | \( 1 + (-0.841 + 0.540i)T \) |
| 47 | \( 1 + (-0.786 - 0.618i)T \) |
| 53 | \( 1 + (0.0475 - 0.998i)T \) |
| 59 | \( 1 + (-0.327 + 0.945i)T \) |
| 61 | \( 1 + (0.580 + 0.814i)T \) |
| 71 | \( 1 + (-0.841 - 0.540i)T \) |
| 73 | \( 1 + (0.995 - 0.0950i)T \) |
| 79 | \( 1 + (0.327 + 0.945i)T \) |
| 83 | \( 1 + (0.415 + 0.909i)T \) |
| 89 | \( 1 + (0.928 + 0.371i)T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.439809723510501016877571021686, −20.12151285536623662404435964119, −18.80859634871643151241502906889, −17.7701287222812879678173780043, −17.29183084494484634430593311539, −16.89962464301319951011110637191, −15.723472740793569573910235330065, −14.94413948186652998433856234556, −14.58067850021694267223631374968, −13.485017263838323383300590580453, −12.97834230706378539240980534624, −12.39455128363480531036291692711, −11.30462666508003959186724376453, −10.429441419443447825803495697782, −9.32129933760742459960332056666, −8.852241030281202899387949035328, −7.67813513114020316037654432998, −6.85441486956309824328409959533, −6.29069450171545032168043383679, −5.239588877231520843776811575649, −4.750200956940445175455201958155, −3.70265502866546494267556494022, −2.55148569496795000442127854559, −1.89171462066415335519357658503, −0.18159343380315599425109417903,
1.316739988353031004336770827112, 1.91291523644452205168474503595, 2.95365266024529482256100872348, 3.74751997407649454640268665231, 4.87307677761792121606345627146, 5.46348608622470583388516470189, 6.48655681687753290153944000023, 6.91528224874647165314857239862, 8.56011625675782115328360380999, 9.341822930589861213586721951615, 9.92602473180347969504647005278, 10.85594956990680371346258003894, 11.53295102575705529253863360994, 12.27693581290699486057298240636, 13.39589010135414692958232146722, 13.57919951576135601763570573007, 14.58864155470067652353373138897, 14.973166756583630207001471381777, 16.31142165154757121323978874135, 16.86650995589108110464489102177, 17.9013918627280131115291026893, 18.63604296488175500528835573869, 19.33127763671615832575414269305, 20.058354471358807614282965279, 20.99576671841471943179330030059