L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.939 − 0.342i)7-s + (0.5 − 0.866i)8-s + (0.766 + 0.642i)11-s + (−0.173 − 0.984i)13-s + (0.173 + 0.984i)14-s + (0.766 + 0.642i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.766 + 0.642i)22-s + (0.939 + 0.342i)23-s + 26-s − 28-s + (0.173 − 0.984i)29-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.939 − 0.342i)7-s + (0.5 − 0.866i)8-s + (0.766 + 0.642i)11-s + (−0.173 − 0.984i)13-s + (0.173 + 0.984i)14-s + (0.766 + 0.642i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.766 + 0.642i)22-s + (0.939 + 0.342i)23-s + 26-s − 28-s + (0.173 − 0.984i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8667607057 + 0.5346259637i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8667607057 + 0.5346259637i\) |
\(L(1)\) |
\(\approx\) |
\(0.9095316534 + 0.4081925615i\) |
\(L(1)\) |
\(\approx\) |
\(0.9095316534 + 0.4081925615i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.173 + 0.984i)T \) |
| 7 | \( 1 + (0.939 - 0.342i)T \) |
| 11 | \( 1 + (0.766 + 0.642i)T \) |
| 13 | \( 1 + (-0.173 - 0.984i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.939 + 0.342i)T \) |
| 29 | \( 1 + (0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.939 - 0.342i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.173 + 0.984i)T \) |
| 43 | \( 1 + (-0.766 - 0.642i)T \) |
| 47 | \( 1 + (0.939 - 0.342i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.766 - 0.642i)T \) |
| 61 | \( 1 + (-0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (-0.173 + 0.984i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.766 - 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.40689338652596953482201591288, −27.39875965790145367764512634428, −26.867983608719940510582231283154, −25.52382471097389058059678380841, −24.293896486423497551978207394075, −23.30033543904187992562757179545, −21.95479254015595554322633648865, −21.418062680738370754291930469310, −20.38153691136337577841114257091, −19.27807491243263972031624883424, −18.46872059788454439762581844409, −17.414636980524901682640756307644, −16.42377089256557641472968456155, −14.62159230153428286337232887607, −13.963717601879636665802700451149, −12.57557633165578472308608889974, −11.51749753861495009064183642201, −10.9089469784418734080599719853, −9.27295920563290551683324850092, −8.67486991500951785765802070626, −7.14983766437949596789314008824, −5.29292098920741411560673569980, −4.202929700575303049598826579766, −2.71424545211776813810265989564, −1.33388610707639769851497660640,
1.439637137362731854881770283746, 3.85237012404635370802134582625, 5.004718942558198942541303064489, 6.204799545219017688568032212241, 7.54147878928004133285398693326, 8.28721353704018055407446720030, 9.65363619764267734166319346082, 10.724412296494545383344021836080, 12.30481927147214268792125686201, 13.48695427961586803288382709399, 14.795176555777931908897560515396, 15.074975827266734925957006576463, 16.807050905529099263051104431353, 17.29259654828583536965107311419, 18.33364562430024427067452903240, 19.50459155150275046829637161571, 20.6948555645724758731807240152, 21.9638397061634975037893176256, 23.049747973041138171806781252410, 23.778155298537391352107678393842, 24.97686263511852323626713055138, 25.454660156640829759725630062191, 26.89471863955312547614810087886, 27.45175419765311897846694395925, 28.31980128195320199067048807111