L(s) = 1 | + (−0.998 − 0.0498i)2-s + (0.995 + 0.0995i)4-s + (−0.661 − 0.749i)5-s + (−0.988 − 0.149i)8-s + (0.623 + 0.781i)10-s + (−0.998 − 0.0498i)11-s + (−0.797 + 0.603i)13-s + (0.980 + 0.198i)16-s + (−0.900 + 0.433i)17-s + 19-s + (−0.583 − 0.811i)20-s + (0.995 + 0.0995i)22-s + (−0.411 − 0.911i)23-s + (−0.124 + 0.992i)25-s + (0.826 − 0.563i)26-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0498i)2-s + (0.995 + 0.0995i)4-s + (−0.661 − 0.749i)5-s + (−0.988 − 0.149i)8-s + (0.623 + 0.781i)10-s + (−0.998 − 0.0498i)11-s + (−0.797 + 0.603i)13-s + (0.980 + 0.198i)16-s + (−0.900 + 0.433i)17-s + 19-s + (−0.583 − 0.811i)20-s + (0.995 + 0.0995i)22-s + (−0.411 − 0.911i)23-s + (−0.124 + 0.992i)25-s + (0.826 − 0.563i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.863 - 0.504i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.863 - 0.504i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5257697684 - 0.1422185686i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5257697684 - 0.1422185686i\) |
\(L(1)\) |
\(\approx\) |
\(0.5308416171 - 0.06228508674i\) |
\(L(1)\) |
\(\approx\) |
\(0.5308416171 - 0.06228508674i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.998 - 0.0498i)T \) |
| 5 | \( 1 + (-0.661 - 0.749i)T \) |
| 11 | \( 1 + (-0.998 - 0.0498i)T \) |
| 13 | \( 1 + (-0.797 + 0.603i)T \) |
| 17 | \( 1 + (-0.900 + 0.433i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.411 - 0.911i)T \) |
| 29 | \( 1 + (-0.411 + 0.911i)T \) |
| 31 | \( 1 + (-0.939 + 0.342i)T \) |
| 37 | \( 1 + (0.826 + 0.563i)T \) |
| 41 | \( 1 + (0.980 - 0.198i)T \) |
| 43 | \( 1 + (-0.318 - 0.947i)T \) |
| 47 | \( 1 + (0.542 - 0.840i)T \) |
| 53 | \( 1 + (0.0747 + 0.997i)T \) |
| 59 | \( 1 + (-0.0249 + 0.999i)T \) |
| 61 | \( 1 + (0.995 - 0.0995i)T \) |
| 67 | \( 1 + (0.173 - 0.984i)T \) |
| 71 | \( 1 + (0.826 - 0.563i)T \) |
| 73 | \( 1 + (0.955 + 0.294i)T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 + (-0.797 - 0.603i)T \) |
| 89 | \( 1 + (-0.222 - 0.974i)T \) |
| 97 | \( 1 + (-0.939 - 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.70321581538587326212872484899, −20.02659948552049068990734813108, −19.462582674075019024688448506146, −18.63969386327344530185786093388, −17.94534892811525914740867747498, −17.557819211123246584154368537535, −16.26438512692386850383244914723, −15.80032868706014851625700274004, −15.128190071979269719923133525665, −14.40040184489009745215496838154, −13.213868935468620386006249393221, −12.31282034033679170889006216580, −11.24540870389396471660194643043, −11.101200954074525949734726757738, −9.88117990287937779348249409717, −9.53278818921121164594954592656, −8.17825518274107850315888563866, −7.632701134585267499418322448051, −7.14553610105160426071618445661, −6.03505961504388068728283922299, −5.156206531664726010022477465323, −3.8071120652387414871584563172, −2.77537011923901533322091744194, −2.227278290864192323733531194853, −0.59446368947799022051185040244,
0.52012705744886893145943134173, 1.78260012740979947003457868166, 2.66961080373616647108556421912, 3.81528129004713929070509134150, 4.86713943998394752842791535589, 5.74133076897603909392793161086, 7.00101675143743823255040230200, 7.52480889461821091938291521523, 8.41680007906249605249440709882, 9.009037363187760894448449076440, 9.847825750764199872770774070014, 10.762697626696575823591951795486, 11.43263418943120569134769429835, 12.34226176936311443441219057566, 12.812839488819190980180318091136, 14.03588568423456310204114443046, 15.145650371561002868295323854348, 15.66909687891125849515592481111, 16.548210119724639405837338271315, 16.85078033547550348413715245267, 18.05651195584897160331418384885, 18.45991942149162729421965634488, 19.43269498899891665503341511122, 20.09509146679995612935818237930, 20.48411644128911059409655791440