L(s) = 1 | + (0.980 − 0.198i)2-s + (0.921 − 0.388i)4-s + (−0.969 + 0.246i)5-s + (0.826 − 0.563i)8-s + (−0.900 + 0.433i)10-s + (0.980 − 0.198i)11-s + (−0.853 + 0.521i)13-s + (0.698 − 0.715i)16-s + (−0.222 + 0.974i)17-s + 19-s + (−0.797 + 0.603i)20-s + (0.921 − 0.388i)22-s + (−0.124 + 0.992i)23-s + (0.878 − 0.478i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
L(s) = 1 | + (0.980 − 0.198i)2-s + (0.921 − 0.388i)4-s + (−0.969 + 0.246i)5-s + (0.826 − 0.563i)8-s + (−0.900 + 0.433i)10-s + (0.980 − 0.198i)11-s + (−0.853 + 0.521i)13-s + (0.698 − 0.715i)16-s + (−0.222 + 0.974i)17-s + 19-s + (−0.797 + 0.603i)20-s + (0.921 − 0.388i)22-s + (−0.124 + 0.992i)23-s + (0.878 − 0.478i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.628727090 + 0.1891510528i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.628727090 + 0.1891510528i\) |
\(L(1)\) |
\(\approx\) |
\(1.759069757 - 0.05666765427i\) |
\(L(1)\) |
\(\approx\) |
\(1.759069757 - 0.05666765427i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.980 - 0.198i)T \) |
| 5 | \( 1 + (-0.969 + 0.246i)T \) |
| 11 | \( 1 + (0.980 - 0.198i)T \) |
| 13 | \( 1 + (-0.853 + 0.521i)T \) |
| 17 | \( 1 + (-0.222 + 0.974i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.124 + 0.992i)T \) |
| 29 | \( 1 + (-0.124 - 0.992i)T \) |
| 31 | \( 1 + (0.173 + 0.984i)T \) |
| 37 | \( 1 + (-0.733 - 0.680i)T \) |
| 41 | \( 1 + (0.698 + 0.715i)T \) |
| 43 | \( 1 + (0.270 + 0.962i)T \) |
| 47 | \( 1 + (-0.661 - 0.749i)T \) |
| 53 | \( 1 + (0.955 + 0.294i)T \) |
| 59 | \( 1 + (0.995 - 0.0995i)T \) |
| 61 | \( 1 + (0.921 + 0.388i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.733 + 0.680i)T \) |
| 73 | \( 1 + (0.365 - 0.930i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (-0.853 - 0.521i)T \) |
| 89 | \( 1 + (0.623 + 0.781i)T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.67703920386695953327395505253, −20.35874825810782223999149476144, −19.67487883150774086837566103962, −18.865293880282292885938306716057, −17.698648633649078105318817618261, −16.85826323591227643129532711885, −16.16380462615735632452995503444, −15.54815100888072886922402695156, −14.678436875303007574214925488725, −14.22302999003459717816410552960, −13.17028946030003953685219311699, −12.33622630317625239339001276528, −11.86103319881621511874985195459, −11.208515737792794711223285394503, −10.1449500497850187344045935722, −9.064428854496234595166060187078, −8.105936972887609424956536391878, −7.224780712178638514063080034136, −6.817150448095777122452571563872, −5.50750470230846221502844517611, −4.82562404991712438928893599749, −4.03359767779739952861066332404, −3.22703069663005790069877722503, −2.295501308937653970866832006790, −0.86708345920436845304443704703,
1.12488054980660567403523299841, 2.22192389259156402958709684467, 3.3550676827624772494125828361, 3.9150828260485070184704824719, 4.7135701760151147822285675953, 5.712950465819033822296970901177, 6.68472492944895790499827493737, 7.28474775371921697550950784443, 8.16644027762784700743266892743, 9.35713897048046641161631308563, 10.23007694122752195085137343443, 11.26888091860093732407244962386, 11.72323148345959749623618243434, 12.32061805276067636355094684001, 13.25867858047378116675637902137, 14.225943391856153904463824079340, 14.67230123128873741290480777314, 15.48136525087318781684862178427, 16.1675476112883546565899115097, 16.93202701031119056858431538696, 17.91974830606811809045834249819, 19.27540816609816400778834601702, 19.453569921420713559361999799131, 20.037245373235182265455373294274, 21.17896013650439256544513905691