| L(s) = 1 | + (0.642 − 0.766i)7-s + (−0.173 + 0.984i)11-s + (0.342 − 0.939i)13-s + (−0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s + (−0.642 − 0.766i)23-s + (0.939 − 0.342i)29-s + (−0.766 + 0.642i)31-s + (−0.866 + 0.5i)37-s + (0.939 + 0.342i)41-s + (−0.984 − 0.173i)43-s + (−0.642 + 0.766i)47-s + (−0.173 − 0.984i)49-s − i·53-s + (0.173 + 0.984i)59-s + ⋯ |
| L(s) = 1 | + (0.642 − 0.766i)7-s + (−0.173 + 0.984i)11-s + (0.342 − 0.939i)13-s + (−0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s + (−0.642 − 0.766i)23-s + (0.939 − 0.342i)29-s + (−0.766 + 0.642i)31-s + (−0.866 + 0.5i)37-s + (0.939 + 0.342i)41-s + (−0.984 − 0.173i)43-s + (−0.642 + 0.766i)47-s + (−0.173 − 0.984i)49-s − i·53-s + (0.173 + 0.984i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.996 - 0.0880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.996 - 0.0880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02265447118 - 0.5136465203i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.02265447118 - 0.5136465203i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9511895929 - 0.1388635246i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9511895929 - 0.1388635246i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.642 - 0.766i)T \) |
| 11 | \( 1 + (-0.173 + 0.984i)T \) |
| 13 | \( 1 + (0.342 - 0.939i)T \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.642 - 0.766i)T \) |
| 29 | \( 1 + (0.939 - 0.342i)T \) |
| 31 | \( 1 + (-0.766 + 0.642i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + (-0.984 - 0.173i)T \) |
| 47 | \( 1 + (-0.642 + 0.766i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.173 + 0.984i)T \) |
| 61 | \( 1 + (-0.766 - 0.642i)T \) |
| 67 | \( 1 + (0.342 - 0.939i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.939 + 0.342i)T \) |
| 83 | \( 1 + (-0.342 - 0.939i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.984 + 0.173i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.57641755567452965463452555990, −21.04560531524150270000854726926, −20.109237641289082818201461203978, −19.224302935619071912363906089437, −18.42572995983736839943623397402, −18.001584880773633039016831250135, −16.923569771640740746435159535261, −16.04354033250570417737035074276, −15.59125077442887527903784224826, −14.37519547819623395812673528859, −13.97120221418809905881614789558, −13.030293176751110753303371818055, −11.886091695187165868881604587421, −11.49858243056789173547644328225, −10.63687359097546117193549234548, −9.48759867672490239466022202297, −8.76818221054500661813988901809, −8.08969855166523260080654927204, −7.060800943505150495032053102244, −6.01439178542469447105583230833, −5.379257035220091145597093718414, −4.32573030781536031193601425818, −3.35280205546856309787441222652, −2.23991677209166625843547201443, −1.37238365223830828120961782874,
0.10278376706740803110074299872, 1.27478645214660187660226343190, 2.28149927974733367241947718127, 3.426656608554296587909506156032, 4.50859589800853413694716870024, 5.02874514982155531674720197385, 6.316580890124566051813809684330, 7.11886375739656583782662558110, 7.96178525665575721830346665451, 8.679962299196029323375872466346, 9.85429771472070845879655413348, 10.53913954350384156020414472534, 11.207861813893031174294497085188, 12.248424632909419536053348159859, 13.03647200327464692797353422395, 13.773958115686382576925704355160, 14.653499408391623820333014716169, 15.39245264571033250261594900170, 16.11814797715037846098627810869, 17.224720502037783458931803500406, 17.806271915040381009756993050021, 18.23226953821286304793746494314, 19.710399308579640277844038859919, 20.023552682260346558714852864033, 20.77225420632572733332787419131