Properties

Label 1-1045-1045.138-r0-0-0
Degree 11
Conductor 10451045
Sign 0.8810.472i0.881 - 0.472i
Analytic cond. 4.852954.85295
Root an. cond. 4.852954.85295
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.970 − 0.241i)2-s + (0.999 + 0.0348i)3-s + (0.882 + 0.469i)4-s + (−0.961 − 0.275i)6-s + (−0.743 + 0.669i)7-s + (−0.743 − 0.669i)8-s + (0.997 + 0.0697i)9-s + (0.866 + 0.5i)12-s + (−0.829 − 0.559i)13-s + (0.882 − 0.469i)14-s + (0.559 + 0.829i)16-s + (−0.0697 − 0.997i)17-s + (−0.951 − 0.309i)18-s + (−0.766 + 0.642i)21-s + (0.984 + 0.173i)23-s + (−0.719 − 0.694i)24-s + ⋯
L(s)  = 1  + (−0.970 − 0.241i)2-s + (0.999 + 0.0348i)3-s + (0.882 + 0.469i)4-s + (−0.961 − 0.275i)6-s + (−0.743 + 0.669i)7-s + (−0.743 − 0.669i)8-s + (0.997 + 0.0697i)9-s + (0.866 + 0.5i)12-s + (−0.829 − 0.559i)13-s + (0.882 − 0.469i)14-s + (0.559 + 0.829i)16-s + (−0.0697 − 0.997i)17-s + (−0.951 − 0.309i)18-s + (−0.766 + 0.642i)21-s + (0.984 + 0.173i)23-s + (−0.719 − 0.694i)24-s + ⋯

Functional equation

Λ(s)=(1045s/2ΓR(s)L(s)=((0.8810.472i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1045s/2ΓR(s)L(s)=((0.8810.472i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 10451045    =    511195 \cdot 11 \cdot 19
Sign: 0.8810.472i0.881 - 0.472i
Analytic conductor: 4.852954.85295
Root analytic conductor: 4.852954.85295
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1045(138,)\chi_{1045} (138, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1045, (0: ), 0.8810.472i)(1,\ 1045,\ (0:\ ),\ 0.881 - 0.472i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.2165784590.3058632802i1.216578459 - 0.3058632802i
L(12)L(\frac12) \approx 1.2165784590.3058632802i1.216578459 - 0.3058632802i
L(1)L(1) \approx 0.93707603270.09394750394i0.9370760327 - 0.09394750394i
L(1)L(1) \approx 0.93707603270.09394750394i0.9370760327 - 0.09394750394i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
11 1 1
19 1 1
good2 1+(0.9700.241i)T 1 + (-0.970 - 0.241i)T
3 1+(0.999+0.0348i)T 1 + (0.999 + 0.0348i)T
7 1+(0.743+0.669i)T 1 + (-0.743 + 0.669i)T
13 1+(0.8290.559i)T 1 + (-0.829 - 0.559i)T
17 1+(0.06970.997i)T 1 + (-0.0697 - 0.997i)T
23 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
29 1+(0.8480.529i)T 1 + (0.848 - 0.529i)T
31 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
37 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
41 1+(0.0348+0.999i)T 1 + (-0.0348 + 0.999i)T
43 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
47 1+(0.927+0.374i)T 1 + (0.927 + 0.374i)T
53 1+(0.898+0.438i)T 1 + (-0.898 + 0.438i)T
59 1+(0.374+0.927i)T 1 + (0.374 + 0.927i)T
61 1+(0.7190.694i)T 1 + (0.719 - 0.694i)T
67 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
71 1+(0.4380.898i)T 1 + (0.438 - 0.898i)T
73 1+(0.788+0.615i)T 1 + (0.788 + 0.615i)T
79 1+(0.9610.275i)T 1 + (0.961 - 0.275i)T
83 1+(0.4060.913i)T 1 + (-0.406 - 0.913i)T
89 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
97 1+(0.970+0.241i)T 1 + (0.970 + 0.241i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.29934682414545729067543891535, −20.588065738353125025454394759083, −19.75315795677709490253408620291, −19.28998056086892031227024653079, −18.822335334672626009434518340989, −17.59901289611131083519006208762, −17.01822862849059231205212403227, −16.08921568180527468250644843590, −15.49980588615162546722844807101, −14.52789281490512366518034900692, −14.020086548422123629788269962765, −12.84342020084371110936761836007, −12.193772747782909200866261088269, −10.7678600616348949403326138362, −10.25815734911500401520365338789, −9.40706288023024523847112812514, −8.77809505128140254228021839619, −7.941147102149283216859777262004, −6.90540788221758334680993021509, −6.73972202379000479975927299786, −5.19158827745601450648690194453, −3.94282887024780562317362813918, −3.00551737669781113607170486403, −2.08125178056078533802988759450, −1.011743471372129271667334986192, 0.77077874629457651782772022200, 2.252141449337822193499878379954, 2.744750031501643161722385011386, 3.55780118411381563121575128373, 4.92568060376941158265027431500, 6.225454899144006989174760020931, 7.1758061435049668139713647907, 7.798116989151002289361445885120, 8.76613737069879450141239764642, 9.42562275094612837939514932197, 9.897611214609347652870895409330, 10.89504418705307142841582677123, 12.02393462619837288134453444300, 12.64026386160615930069809156214, 13.47721736898341534461585621768, 14.59717149391911981506427681984, 15.4748687684297284553924745789, 15.82611596633378437172639009929, 16.85783802361652717745657365032, 17.74285062483507907282664391793, 18.64681319486449513577855584074, 19.13304314098891468606314231296, 19.79339630507878074396164764214, 20.5092666021640514625932212872, 21.22439859679951961573962920934

Graph of the ZZ-function along the critical line