| L(s) = 1 | + (−0.904 − 0.425i)2-s + (−0.481 + 0.876i)3-s + (0.637 + 0.770i)4-s + (−0.425 − 0.904i)5-s + (0.809 − 0.587i)6-s + (0.684 + 0.728i)7-s + (−0.248 − 0.968i)8-s + (−0.535 − 0.844i)9-s + i·10-s + (−0.844 + 0.535i)11-s + (−0.982 + 0.187i)12-s + (−0.728 − 0.684i)13-s + (−0.309 − 0.951i)14-s + (0.998 + 0.0627i)15-s + (−0.187 + 0.982i)16-s + (0.809 + 0.587i)17-s + ⋯ |
| L(s) = 1 | + (−0.904 − 0.425i)2-s + (−0.481 + 0.876i)3-s + (0.637 + 0.770i)4-s + (−0.425 − 0.904i)5-s + (0.809 − 0.587i)6-s + (0.684 + 0.728i)7-s + (−0.248 − 0.968i)8-s + (−0.535 − 0.844i)9-s + i·10-s + (−0.844 + 0.535i)11-s + (−0.982 + 0.187i)12-s + (−0.728 − 0.684i)13-s + (−0.309 − 0.951i)14-s + (0.998 + 0.0627i)15-s + (−0.187 + 0.982i)16-s + (0.809 + 0.587i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 101 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.804 - 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.804 - 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7132556451 - 0.2350991263i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7132556451 - 0.2350991263i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6051019680 - 0.04076710260i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6051019680 - 0.04076710260i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 101 | \( 1 \) |
| good | 2 | \( 1 + (-0.904 - 0.425i)T \) |
| 3 | \( 1 + (-0.481 + 0.876i)T \) |
| 5 | \( 1 + (-0.425 - 0.904i)T \) |
| 7 | \( 1 + (0.684 + 0.728i)T \) |
| 11 | \( 1 + (-0.844 + 0.535i)T \) |
| 13 | \( 1 + (-0.728 - 0.684i)T \) |
| 17 | \( 1 + (0.809 + 0.587i)T \) |
| 19 | \( 1 + (-0.187 - 0.982i)T \) |
| 23 | \( 1 + (0.992 + 0.125i)T \) |
| 29 | \( 1 + (0.684 - 0.728i)T \) |
| 31 | \( 1 + (0.728 - 0.684i)T \) |
| 37 | \( 1 + (0.876 - 0.481i)T \) |
| 41 | \( 1 + (-0.587 - 0.809i)T \) |
| 43 | \( 1 + (0.929 - 0.368i)T \) |
| 47 | \( 1 + (0.929 + 0.368i)T \) |
| 53 | \( 1 + (0.770 + 0.637i)T \) |
| 59 | \( 1 + (-0.982 - 0.187i)T \) |
| 61 | \( 1 + (0.770 - 0.637i)T \) |
| 67 | \( 1 + (0.481 + 0.876i)T \) |
| 71 | \( 1 + (0.876 + 0.481i)T \) |
| 73 | \( 1 + (0.125 - 0.992i)T \) |
| 79 | \( 1 + (-0.992 + 0.125i)T \) |
| 83 | \( 1 + (-0.125 - 0.992i)T \) |
| 89 | \( 1 + (0.982 - 0.187i)T \) |
| 97 | \( 1 + (-0.637 - 0.770i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.498934115655881706464725273206, −28.907567696551576774624436015529, −27.33277762425241971698934697475, −26.87092641220910005132939383346, −25.66100928727674704466806731560, −24.55900651703327075412144180734, −23.55140803962385573922601779575, −23.07318003155586074732617434203, −21.26117513663340747847253770799, −19.81443801725579593739193626871, −18.81768351951456655398657336095, −18.27719917879702231964423652298, −17.11319778005685615708418741231, −16.252463049163275167086847950845, −14.673242282736782270964704405449, −13.90157500223168628232933398215, −11.99961923940502239741413698592, −11.037247739182040561177525162628, −10.21175768750950884077428567892, −8.20584880070181210034873711891, −7.45986213917734982697203058353, −6.591929670892994274015453693615, −5.125886034182924176597035072298, −2.64679563803332768815309958478, −0.99478015079236988631393700877,
0.61908326583829627961351954808, 2.64373553364638909477198774383, 4.42946447666619805952964010904, 5.54000655796477571508659344102, 7.647105442368929119095411290906, 8.677304944338431855065017177231, 9.72073580071715135184090346638, 10.847203967402151798764578871586, 11.93914567479083133383118185986, 12.716911119469544069120202631549, 15.197795294611448834031130582478, 15.65987203468873407818120734762, 17.08404215323259628340159082399, 17.56644843061512050627696538581, 19.01048701515075402885318612295, 20.2739544489172979549843730622, 21.01036789382216202901903437046, 21.79098654957761239499067080005, 23.28904345458530695535793613449, 24.51679843485006819709438187301, 25.62283172866082883749596758602, 26.85373276963634835730666232336, 27.671406182788779698674165105300, 28.275151107915550189592089845556, 28.99824832129461578117074379449