| L(s) = 1 | + (−0.786 + 0.618i)5-s + (−0.580 − 0.814i)7-s + (−0.723 + 0.690i)11-s + (0.580 − 0.814i)13-s + (0.841 + 0.540i)17-s + (−0.841 + 0.540i)19-s + (0.235 − 0.971i)25-s + (−0.888 + 0.458i)29-s + (−0.981 − 0.189i)31-s + (0.959 + 0.281i)35-s + (−0.142 + 0.989i)37-s + (−0.786 + 0.618i)41-s + (−0.981 + 0.189i)43-s + (0.5 − 0.866i)47-s + (−0.327 + 0.945i)49-s + ⋯ |
| L(s) = 1 | + (−0.786 + 0.618i)5-s + (−0.580 − 0.814i)7-s + (−0.723 + 0.690i)11-s + (0.580 − 0.814i)13-s + (0.841 + 0.540i)17-s + (−0.841 + 0.540i)19-s + (0.235 − 0.971i)25-s + (−0.888 + 0.458i)29-s + (−0.981 − 0.189i)31-s + (0.959 + 0.281i)35-s + (−0.142 + 0.989i)37-s + (−0.786 + 0.618i)41-s + (−0.981 + 0.189i)43-s + (0.5 − 0.866i)47-s + (−0.327 + 0.945i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.926 - 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.926 - 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9482476002 - 0.1852408342i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9482476002 - 0.1852408342i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7691783097 + 0.02653924077i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7691783097 + 0.02653924077i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 23 | \( 1 \) |
| good | 5 | \( 1 + (-0.786 + 0.618i)T \) |
| 7 | \( 1 + (-0.580 - 0.814i)T \) |
| 11 | \( 1 + (-0.723 + 0.690i)T \) |
| 13 | \( 1 + (0.580 - 0.814i)T \) |
| 17 | \( 1 + (0.841 + 0.540i)T \) |
| 19 | \( 1 + (-0.841 + 0.540i)T \) |
| 29 | \( 1 + (-0.888 + 0.458i)T \) |
| 31 | \( 1 + (-0.981 - 0.189i)T \) |
| 37 | \( 1 + (-0.142 + 0.989i)T \) |
| 41 | \( 1 + (-0.786 + 0.618i)T \) |
| 43 | \( 1 + (-0.981 + 0.189i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.415 - 0.909i)T \) |
| 59 | \( 1 + (-0.580 + 0.814i)T \) |
| 61 | \( 1 + (-0.327 - 0.945i)T \) |
| 67 | \( 1 + (-0.723 - 0.690i)T \) |
| 71 | \( 1 + (0.959 - 0.281i)T \) |
| 73 | \( 1 + (0.841 - 0.540i)T \) |
| 79 | \( 1 + (0.995 + 0.0950i)T \) |
| 83 | \( 1 + (0.786 + 0.618i)T \) |
| 89 | \( 1 + (-0.654 - 0.755i)T \) |
| 97 | \( 1 + (0.928 + 0.371i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.90511321637519044995893977914, −21.21681982122013875079827573393, −20.50382052193626673820234757215, −19.468481870240124125121642492845, −18.84875319916017551784947470289, −18.35110043793847186014569667474, −16.92617986878403171503425848253, −16.31738065197971576256900193076, −15.699976594560624919196020718006, −14.96058676616062185937390133307, −13.787211158500322546896749820475, −12.97494467630186812606773799169, −12.25338759866461652141377217933, −11.45902323866669810614704229561, −10.67192399987049029153393994814, −9.33046732252010115698387396660, −8.841350964465030538939406527697, −7.9640017973839502726233419915, −6.997313597718095215288499487855, −5.86599677959350766452240593467, −5.159246418133203795711206386286, −3.98632148553784381989531105055, −3.17056800028953856557362721717, −1.996286158888477659248434683022, −0.558361285290231987329392539010,
0.383611296021801691320563210286, 1.82738797177626585919969037536, 3.28300468689906456467243500251, 3.66367181814218341597381827471, 4.85142090789095513783736191377, 6.026253577233707471538411708088, 6.94064294741030108709075322298, 7.730725653138908533698060243869, 8.36003466107916073331426253552, 9.834960946431753298302560339506, 10.44979019786092469245601645095, 11.046276839235513567951241663807, 12.2749270994611694303392979569, 12.9000559108045827873300931204, 13.753560213259410480621702626959, 15.017584093496808655034469719975, 15.173698260598114595477323732173, 16.40775823243060356121491944171, 16.9059470121026529321908350154, 18.19569252878793235765267390420, 18.62057941600361586236858323556, 19.63314969954109483417972074911, 20.225105317187547748732723495991, 20.98256010439089326707875027124, 22.11320065749533974070373492577