| L(s) = 1 | + (0.841 − 0.540i)3-s + (−0.415 − 0.909i)5-s + (0.415 − 0.909i)9-s + (0.654 + 0.755i)11-s + (0.959 + 0.281i)13-s + (−0.841 − 0.540i)15-s + (0.142 − 0.989i)17-s + (−0.142 − 0.989i)19-s + (−0.654 + 0.755i)25-s + (−0.142 − 0.989i)27-s + (−0.142 + 0.989i)29-s + (0.841 + 0.540i)31-s + (0.959 + 0.281i)33-s + (0.415 − 0.909i)37-s + (0.959 − 0.281i)39-s + ⋯ |
| L(s) = 1 | + (0.841 − 0.540i)3-s + (−0.415 − 0.909i)5-s + (0.415 − 0.909i)9-s + (0.654 + 0.755i)11-s + (0.959 + 0.281i)13-s + (−0.841 − 0.540i)15-s + (0.142 − 0.989i)17-s + (−0.142 − 0.989i)19-s + (−0.654 + 0.755i)25-s + (−0.142 − 0.989i)27-s + (−0.142 + 0.989i)29-s + (0.841 + 0.540i)31-s + (0.959 + 0.281i)33-s + (0.415 − 0.909i)37-s + (0.959 − 0.281i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.401050909 - 1.245091892i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.401050909 - 1.245091892i\) |
| \(L(1)\) |
\(\approx\) |
\(1.290226832 - 0.5361986738i\) |
| \(L(1)\) |
\(\approx\) |
\(1.290226832 - 0.5361986738i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 3 | \( 1 + (0.841 - 0.540i)T \) |
| 5 | \( 1 + (-0.415 - 0.909i)T \) |
| 11 | \( 1 + (0.654 + 0.755i)T \) |
| 13 | \( 1 + (0.959 + 0.281i)T \) |
| 17 | \( 1 + (0.142 - 0.989i)T \) |
| 19 | \( 1 + (-0.142 - 0.989i)T \) |
| 29 | \( 1 + (-0.142 + 0.989i)T \) |
| 31 | \( 1 + (0.841 + 0.540i)T \) |
| 37 | \( 1 + (0.415 - 0.909i)T \) |
| 41 | \( 1 + (-0.415 - 0.909i)T \) |
| 43 | \( 1 + (-0.841 + 0.540i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (-0.959 + 0.281i)T \) |
| 59 | \( 1 + (-0.959 - 0.281i)T \) |
| 61 | \( 1 + (-0.841 - 0.540i)T \) |
| 67 | \( 1 + (0.654 - 0.755i)T \) |
| 71 | \( 1 + (0.654 - 0.755i)T \) |
| 73 | \( 1 + (0.142 + 0.989i)T \) |
| 79 | \( 1 + (0.959 + 0.281i)T \) |
| 83 | \( 1 + (0.415 - 0.909i)T \) |
| 89 | \( 1 + (-0.841 + 0.540i)T \) |
| 97 | \( 1 + (-0.415 - 0.909i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.95765886193668468467487530321, −22.153578037879972268298549509774, −21.46204747045087519253895190005, −20.634084164577274396232414215757, −19.75742964336890112552706435344, −18.93159252345266464307503173663, −18.574826620258615889795721452647, −17.15767186258754601374680818507, −16.33335076620452241680818582295, −15.343956009819503307841467608216, −14.91126421787772054281456012750, −13.95209855109238324298366602513, −13.38059458022624580073283552542, −12.02138895494951652776456813627, −11.06379139089181175369828829227, −10.38842901339784355951384116610, −9.52548993125269580342408290728, −8.21068958968317695651702600543, −8.08016492324519152792508371087, −6.59110143197269700421749028433, −5.84715933595036170833895364235, −4.2199189815259073075672643433, −3.63847017112676364316945206643, −2.827290858131972318046351584794, −1.5185939156940720045355552947,
0.93315669242840711486893636737, 1.86871824971319341480413241427, 3.16412636909413884474296087588, 4.13746523265934303065880116672, 5.02235703024932750522836338570, 6.478772942280490852082590827008, 7.24557761520597087802790097646, 8.18360394080233077393543845410, 9.07542337410041097610745674338, 9.450035741021171826510584227105, 10.998327311482785168299206560902, 12.03170230754428383436363953594, 12.596073632386358749491695266380, 13.55365789367111054047914767975, 14.17231673788076220344530547420, 15.3175799234402075516743955407, 15.87821121961296360267484446660, 16.94562012319895607371714961387, 17.86924988000308157718506376312, 18.661952038910640967850541252921, 19.63937550411739115257400880000, 20.161621904869068252506776158380, 20.78396388316751939534398110688, 21.689524904877104364601287332285, 23.00847338000124756390457474921