sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(644, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,4]))
pari:[g,chi] = znchar(Mod(27,644))
| Modulus: | \(644\) | |
| Conductor: | \(644\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{644}(27,\cdot)\)
\(\chi_{644}(55,\cdot)\)
\(\chi_{644}(167,\cdot)\)
\(\chi_{644}(223,\cdot)\)
\(\chi_{644}(279,\cdot)\)
\(\chi_{644}(307,\cdot)\)
\(\chi_{644}(335,\cdot)\)
\(\chi_{644}(363,\cdot)\)
\(\chi_{644}(531,\cdot)\)
\(\chi_{644}(587,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((323,185,281)\) → \((-1,-1,e\left(\frac{2}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(25\) | \(27\) |
| \( \chi_{ 644 }(27, a) \) |
\(1\) | \(1\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)