| L(s) = 1 | + (−0.989 − 0.142i)3-s + (0.281 + 0.959i)5-s + (0.654 + 0.755i)7-s + (0.959 + 0.281i)9-s + (0.540 − 0.841i)11-s + (−0.755 − 0.654i)13-s + (−0.142 − 0.989i)15-s + (0.415 + 0.909i)17-s + (0.909 + 0.415i)19-s + (−0.540 − 0.841i)21-s + (−0.841 + 0.540i)25-s + (−0.909 − 0.415i)27-s + (−0.909 + 0.415i)29-s + (−0.142 − 0.989i)31-s + (−0.654 + 0.755i)33-s + ⋯ |
| L(s) = 1 | + (−0.989 − 0.142i)3-s + (0.281 + 0.959i)5-s + (0.654 + 0.755i)7-s + (0.959 + 0.281i)9-s + (0.540 − 0.841i)11-s + (−0.755 − 0.654i)13-s + (−0.142 − 0.989i)15-s + (0.415 + 0.909i)17-s + (0.909 + 0.415i)19-s + (−0.540 − 0.841i)21-s + (−0.841 + 0.540i)25-s + (−0.909 − 0.415i)27-s + (−0.909 + 0.415i)29-s + (−0.142 − 0.989i)31-s + (−0.654 + 0.755i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.468 + 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.468 + 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8988273735 + 0.5410016724i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8988273735 + 0.5410016724i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8926813445 + 0.2188150996i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8926813445 + 0.2188150996i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
| good | 3 | \( 1 + (-0.989 - 0.142i)T \) |
| 5 | \( 1 + (0.281 + 0.959i)T \) |
| 7 | \( 1 + (0.654 + 0.755i)T \) |
| 11 | \( 1 + (0.540 - 0.841i)T \) |
| 13 | \( 1 + (-0.755 - 0.654i)T \) |
| 17 | \( 1 + (0.415 + 0.909i)T \) |
| 19 | \( 1 + (0.909 + 0.415i)T \) |
| 29 | \( 1 + (-0.909 + 0.415i)T \) |
| 31 | \( 1 + (-0.142 - 0.989i)T \) |
| 37 | \( 1 + (-0.281 + 0.959i)T \) |
| 41 | \( 1 + (0.959 - 0.281i)T \) |
| 43 | \( 1 + (0.989 + 0.142i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (-0.755 + 0.654i)T \) |
| 59 | \( 1 + (0.755 + 0.654i)T \) |
| 61 | \( 1 + (0.989 - 0.142i)T \) |
| 67 | \( 1 + (0.540 + 0.841i)T \) |
| 71 | \( 1 + (-0.841 + 0.540i)T \) |
| 73 | \( 1 + (-0.415 + 0.909i)T \) |
| 79 | \( 1 + (-0.654 + 0.755i)T \) |
| 83 | \( 1 + (0.281 - 0.959i)T \) |
| 89 | \( 1 + (0.142 - 0.989i)T \) |
| 97 | \( 1 + (-0.959 + 0.281i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.37456335031850183939846277949, −23.68976904700297949799042865531, −22.802962680439236757691887831519, −21.94841108825165445896598382320, −20.92515914328157772379304904229, −20.385578073714175080041838967726, −19.2848371845699751488456920038, −17.815961042794647213540327690720, −17.50922107736202982084839012328, −16.58574491659170463576881552355, −15.97634033280474329188792515299, −14.60469970037227247957375743746, −13.71692813289575770173643366041, −12.535991151294085519243040035286, −11.90249210011967762280478159268, −11.01532366131480531573206942600, −9.76896915178017492848526149004, −9.26728868089461874499889212396, −7.58598546564540058146809901642, −6.95672177730467278424348843174, −5.49209235737543674739894878215, −4.7968806416260860282018633958, −4.03802658554863112809380741751, −1.902904050020926239681471091290, −0.83415663235702529930876607680,
1.35710645833104511233713587159, 2.655643227843089252278853774, 3.99469393605871123814365351872, 5.61520929746607857200184375077, 5.7896211245181269414467370267, 7.1310911591615532841400856770, 8.01062079978994034161487360577, 9.46251504860466075555305914865, 10.44802453719987676360615697210, 11.266342051412170316903416548893, 11.958031002340843738817131271881, 12.96825084407672064502204310431, 14.23606203827807821291033137059, 14.93852991123617177596898622187, 15.93919077324629944332463898732, 17.126480619337827353995080834996, 17.64038418659841199392829507472, 18.70417749189139352624433802035, 19.03985802735303336930750837086, 20.6086487463796472200960443524, 21.8029124414445241162577968565, 22.05438173581646417525505721659, 22.85329093518521553981752875173, 24.09132381027479459168935405957, 24.55379106750387577051557048856