Refined passport label |
Genus |
Quotient genus |
Group |
Group order |
Dimension |
Signature |
Hyperelliptic |
Cyclic trigonal |
Generating vectors |
12.9-1.0.9-9-9-9-9.1 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.2 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.3 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.4 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.5 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.6 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.7 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.8 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.9 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.10 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.11 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.12 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.13 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.14 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.15 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,4,7,2,5,8,3,6,9),\ldots$ |
12.9-1.0.9-9-9-9-9.16 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.17 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.18 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.19 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.20 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.21 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.22 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.23 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,7,5,3,9,4,2,8,6),\ldots$ |
12.9-1.0.9-9-9-9-9.24 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,5,9,2,6,7,3,4,8),\ldots$ |
12.9-1.0.9-9-9-9-9.25 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,5,9,2,6,7,3,4,8),\ldots$ |
12.9-1.0.9-9-9-9-9.26 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,5,9,2,6,7,3,4,8),\ldots$ |
12.9-1.0.9-9-9-9-9.27 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,5,9,2,6,7,3,4,8),\ldots$ |
12.9-1.0.9-9-9-9-9.28 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,8,4,3,7,6,2,9,5),\ldots$ |
12.9-1.0.9-9-9-9-9.29 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,8,4,3,7,6,2,9,5),\ldots$ |
12.9-1.0.9-9-9-9-9.30 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$2$ |
$[ 0; 9, 9, 9, 9, 9 ]$ |
|
|
$(1,6,8,2,4,9,3,5,7),\ldots$ |
12.9-1.0.3-3-3-3-9-9.1 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.2 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.3 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.4 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.5 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.6 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.7 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.8 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.9 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.10 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.11 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.12 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,2,3)(4,5,6)(7,8,9),\ldots$ |
12.9-1.0.3-3-3-3-9-9.13 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,3,2)(4,6,5)(7,9,8),\ldots$ |
12.9-1.0.3-3-3-3-9-9.14 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,3,2)(4,6,5)(7,9,8),\ldots$ |
12.9-1.0.3-3-3-3-9-9.15 |
$12$ |
$0$ |
$C_9$ |
$9$ |
$3$ |
$[ 0; 3, 3, 3, 3, 9, 9 ]$ |
|
|
$(1,3,2)(4,6,5)(7,9,8),\ldots$ |