Refined passport label |
Genus |
Quotient genus |
Group |
Group order |
Dimension |
Signature |
Hyperelliptic |
Cyclic trigonal |
Generating vectors |
12.39-2.0.3-13-39.1 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.2 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.3 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.4 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.5 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.6 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.7 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.8 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.9 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.10 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.11 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.12 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,14,27)\cdots(13,26,39),\ldots$ |
12.39-2.0.3-13-39.13 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.14 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.15 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.16 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.17 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.18 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.19 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.20 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.21 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.22 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.23 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |
12.39-2.0.3-13-39.24 |
$12$ |
$0$ |
$C_{39}$ |
$39$ |
$0$ |
$[ 0; 3, 13, 39 ]$ |
|
|
$(1,27,14)\cdots(13,39,26),\ldots$ |