Family Information
Genus: | $8$ |
Quotient genus: | $0$ |
Group name: | $F_7$ |
Group identifier: | $[42,1]$ |
Signature: | $[ 0; 3, 6, 6 ]$ |
Conjugacy classes for this refined passport: | $4, 6, 6$ |
The full automorphism group for this family is $C_2\times F_7$ with signature $[ 0; 2, 6, 6 ]$.
Jacobian variety group algebra decomposition: | $E\times E\times E^{6}$ |
Corresponding character(s): | $3, 4, 7$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
8.42-1.0.3-6-6.2.1
(1,15,8) (2,19,10) (3,16,12) (4,20,14) (5,17,9) (6,21,11) (7,18,13) (22,36,29) (23,40,31) (24,37,33) (25,41,35) (26,38,30) (27,42,32) (28,39,34) | |
(1,41,14,24,19,32) (2,37,9,23,16,30) (3,40,11,22,20,35) (4,36,13,28,17,33) (5,39,8,27,21,31) (6,42,10,26,18,29) (7,38,12,25,15,34) | |
(1,42,11,23,17,34) (2,38,13,22,21,32) (3,41,8,28,18,30) (4,37,10,27,15,35) (5,40,12,26,19,33) (6,36,14,25,16,31) (7,39,9,24,20,29) |