Family Information
Genus: | $13$ |
Quotient genus: | $0$ |
Group name: | $C_4^2:C_2$ |
Group identifier: | $[32,33]$ |
Signature: | $[ 0; 2, 4, 4, 4 ]$ |
Conjugacy classes for this refined passport: | $5, 9, 10, 12$ |
Jacobian variety group algebra decomposition: | $E\times A_{3}^{2}\times E^{2}\times A_{2}^{2}$ |
Corresponding character(s): | $7, 9, 11, 12$ |
Other Data
Hyperelliptic curve(s): | no |
Cyclic trigonal curve(s): | no |
Generating vector(s)
Displaying 2 of 2 generating vectors for this refined passport.
13.32-33.0.2-4-4-4.11.1
(1,17) (2,18) (3,19) (4,20) (5,22) (6,21) (7,24) (8,23) (9,27) (10,28) (11,25) (12,26) (13,32) (14,31) (15,30) (16,29) | |
(1,12,4,9) (2,11,3,10) (5,16,8,13) (6,15,7,14) (17,28,20,25) (18,27,19,26) (21,32,24,29) (22,31,23,30) | |
(1,13,2,14) (3,15,4,16) (5,11,6,12) (7,9,8,10) (17,29,18,30) (19,31,20,32) (21,27,22,28) (23,25,24,26) | |
(1,24,4,21) (2,23,3,22) (5,17,8,20) (6,18,7,19) (9,30,12,31) (10,29,11,32) (13,27,16,26) (14,28,15,25) |
13.32-33.0.2-4-4-4.11.2
(1,17) (2,18) (3,19) (4,20) (5,22) (6,21) (7,24) (8,23) (9,27) (10,28) (11,25) (12,26) (13,32) (14,31) (15,30) (16,29) | |
(1,12,4,9) (2,11,3,10) (5,16,8,13) (6,15,7,14) (17,28,20,25) (18,27,19,26) (21,32,24,29) (22,31,23,30) | |
(1,16,2,15) (3,14,4,13) (5,10,6,9) (7,12,8,11) (17,32,18,31) (19,30,20,29) (21,26,22,25) (23,28,24,27) | |
(1,21,4,24) (2,22,3,23) (5,20,8,17) (6,19,7,18) (9,31,12,30) (10,32,11,29) (13,26,16,27) (14,25,15,28) |