Family Information
Genus: | $12$ |
Quotient genus: | $0$ |
Group name: | $D_6$ |
Group identifier: | $[12,4]$ |
Signature: | $[ 0; 2, 2, 2, 2, 2, 2, 6 ]$ |
Conjugacy classes for this refined passport: | $3, 3, 3, 4, 4, 4, 6$ |
Jacobian variety group algebra decomposition: | $A_{2}\times E\times E\times A_{2}^{2}\times A_{2}^{2}$ |
Corresponding character(s): | $2, 3, 4, 5, 6$ |
Other Data
Hyperelliptic curve(s): | no |
Cyclic trigonal curve(s): | no |
Generating vector(s)
Displaying 20 of 81 generating vectors for this refined passport.
12.12-4.0.2-2-2-2-2-2-6.5.1
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.2
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.3
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.4
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.5
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.6
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.7
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.8
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.9
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.10
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.11
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.12
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.13
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.14
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.15
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.16
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.17
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.18
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,6,2,4,3,5) (7,12,8,10,9,11) |
12.12-4.0.2-2-2-2-2-2-6.5.19
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |
12.12-4.0.2-2-2-2-2-2-6.5.20
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,7) (2,9) (3,8) (4,10) (5,12) (6,11) | |
(1,9) (2,8) (3,7) (4,12) (5,11) (6,10) | |
(1,12) (2,11) (3,10) (4,9) (5,8) (6,7) | |
(1,11) (2,10) (3,12) (4,8) (5,7) (6,9) | |
(1,10) (2,12) (3,11) (4,7) (5,9) (6,8) | |
(1,5,3,4,2,6) (7,11,9,10,8,12) |