Properties

Label 11.40-5.0.2-2-4-4.3
Genus \(11\)
Quotient genus \(0\)
Group \(C_4\times D_5\)
Signature \([ 0; 2, 2, 4, 4 ]\)
Generating Vectors \(12\)

Related objects

Downloads

Learn more

Family Information

Genus: $11$
Quotient genus: $0$
Group name: $C_4\times D_5$
Group identifier: $[40,5]$
Signature: $[ 0; 2, 2, 4, 4 ]$
Conjugacy classes for this refined passport: $3, 4, 8, 8$

The full automorphism group for this family is $D_{20}:C_2$ with signature $[ 0; 2, 2, 2, 4 ]$.

Jacobian variety group algebra decomposition:$E\times E\times E\times A_{4}^{2}$
Corresponding character(s): $4, 5, 6, 13$

Generating vector(s)

Displaying 12 of 12 generating vectors for this refined passport.

11.40-5.0.2-2-4-4.3.1

  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,26) (2,30) (3,29) (4,28) (5,27) (6,21) (7,25) (8,24) (9,23) (10,22) (11,36) (12,40) (13,39) (14,38) (15,37) (16,31) (17,35) (18,34) (19,33) (20,32)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)

11.40-5.0.2-2-4-4.3.2
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,26) (2,30) (3,29) (4,28) (5,27) (6,21) (7,25) (8,24) (9,23) (10,22) (11,36) (12,40) (13,39) (14,38) (15,37) (16,31) (17,35) (18,34) (19,33) (20,32)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)

11.40-5.0.2-2-4-4.3.3
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,36,6,31) (2,40,7,35) (3,39,8,34) (4,38,9,33) (5,37,10,32) (11,21,16,26) (12,25,17,30) (13,24,18,29) (14,23,19,28) (15,22,20,27)
  (1,39,6,34) (2,38,7,33) (3,37,8,32) (4,36,9,31) (5,40,10,35) (11,24,16,29) (12,23,17,28) (13,22,18,27) (14,21,19,26) (15,25,20,30)

11.40-5.0.2-2-4-4.3.4
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)
  (1,36,6,31) (2,40,7,35) (3,39,8,34) (4,38,9,33) (5,37,10,32) (11,21,16,26) (12,25,17,30) (13,24,18,29) (14,23,19,28) (15,22,20,27)

11.40-5.0.2-2-4-4.3.5
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)

11.40-5.0.2-2-4-4.3.6
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,37,6,32) (2,36,7,31) (3,40,8,35) (4,39,9,34) (5,38,10,33) (11,22,16,27) (12,21,17,26) (13,25,18,30) (14,24,19,29) (15,23,20,28)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)

11.40-5.0.2-2-4-4.3.7
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,39,6,34) (2,38,7,33) (3,37,8,32) (4,36,9,31) (5,40,10,35) (11,24,16,29) (12,23,17,28) (13,22,18,27) (14,21,19,26) (15,25,20,30)
  (1,37,6,32) (2,36,7,31) (3,40,8,35) (4,39,9,34) (5,38,10,33) (11,22,16,27) (12,21,17,26) (13,25,18,30) (14,24,19,29) (15,23,20,28)

11.40-5.0.2-2-4-4.3.8
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,36,6,31) (2,40,7,35) (3,39,8,34) (4,38,9,33) (5,37,10,32) (11,21,16,26) (12,25,17,30) (13,24,18,29) (14,23,19,28) (15,22,20,27)
  (1,37,6,32) (2,36,7,31) (3,40,8,35) (4,39,9,34) (5,38,10,33) (11,22,16,27) (12,21,17,26) (13,25,18,30) (14,24,19,29) (15,23,20,28)

11.40-5.0.2-2-4-4.3.9
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)
  (1,39,6,34) (2,38,7,33) (3,37,8,32) (4,36,9,31) (5,40,10,35) (11,24,16,29) (12,23,17,28) (13,22,18,27) (14,21,19,26) (15,25,20,30)

11.40-5.0.2-2-4-4.3.10
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)
  (1,36,6,31) (2,40,7,35) (3,39,8,34) (4,38,9,33) (5,37,10,32) (11,21,16,26) (12,25,17,30) (13,24,18,29) (14,23,19,28) (15,22,20,27)

11.40-5.0.2-2-4-4.3.11
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,37,6,32) (2,36,7,31) (3,40,8,35) (4,39,9,34) (5,38,10,33) (11,22,16,27) (12,21,17,26) (13,25,18,30) (14,24,19,29) (15,23,20,28)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)

11.40-5.0.2-2-4-4.3.12
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,39,6,34) (2,38,7,33) (3,37,8,32) (4,36,9,31) (5,40,10,35) (11,24,16,29) (12,23,17,28) (13,22,18,27) (14,21,19,26) (15,25,20,30)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)

Display number of generating vectors: