Properties

Label 11.40-5.0.2-2-4-4.2
Genus \(11\)
Quotient genus \(0\)
Group \(C_4\times D_5\)
Signature \([ 0; 2, 2, 4, 4 ]\)
Generating Vectors \(12\)

Related objects

Downloads

Learn more

Family Information

Genus: $11$
Quotient genus: $0$
Group name: $C_4\times D_5$
Group identifier: $[40,5]$
Signature: $[ 0; 2, 2, 4, 4 ]$
Conjugacy classes for this refined passport: $3, 4, 7, 7$

The full automorphism group for this family is $D_{20}:C_2$ with signature $[ 0; 2, 2, 2, 4 ]$.

Jacobian variety group algebra decomposition:$E\times E\times E\times A_{4}^{2}$
Corresponding character(s): $4, 5, 6, 13$

Generating vector(s)

Displaying 12 of 12 generating vectors for this refined passport.

11.40-5.0.2-2-4-4.2.1

  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,26) (2,30) (3,29) (4,28) (5,27) (6,21) (7,25) (8,24) (9,23) (10,22) (11,36) (12,40) (13,39) (14,38) (15,37) (16,31) (17,35) (18,34) (19,33) (20,32)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)

11.40-5.0.2-2-4-4.2.2
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,26) (2,30) (3,29) (4,28) (5,27) (6,21) (7,25) (8,24) (9,23) (10,22) (11,36) (12,40) (13,39) (14,38) (15,37) (16,31) (17,35) (18,34) (19,33) (20,32)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)

11.40-5.0.2-2-4-4.2.3
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,31,6,36) (2,35,7,40) (3,34,8,39) (4,33,9,38) (5,32,10,37) (11,26,16,21) (12,30,17,25) (13,29,18,24) (14,28,19,23) (15,27,20,22)
  (1,34,6,39) (2,33,7,38) (3,32,8,37) (4,31,9,36) (5,35,10,40) (11,29,16,24) (12,28,17,23) (13,27,18,22) (14,26,19,21) (15,30,20,25)

11.40-5.0.2-2-4-4.2.4
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)
  (1,31,6,36) (2,35,7,40) (3,34,8,39) (4,33,9,38) (5,32,10,37) (11,26,16,21) (12,30,17,25) (13,29,18,24) (14,28,19,23) (15,27,20,22)

11.40-5.0.2-2-4-4.2.5
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)

11.40-5.0.2-2-4-4.2.6
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,32,6,37) (2,31,7,36) (3,35,8,40) (4,34,9,39) (5,33,10,38) (11,27,16,22) (12,26,17,21) (13,30,18,25) (14,29,19,24) (15,28,20,23)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)

11.40-5.0.2-2-4-4.2.7
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,28) (2,27) (3,26) (4,30) (5,29) (6,23) (7,22) (8,21) (9,25) (10,24) (11,38) (12,37) (13,36) (14,40) (15,39) (16,33) (17,32) (18,31) (19,35) (20,34)
  (1,34,6,39) (2,33,7,38) (3,32,8,37) (4,31,9,36) (5,35,10,40) (11,29,16,24) (12,28,17,23) (13,27,18,22) (14,26,19,21) (15,30,20,25)
  (1,32,6,37) (2,31,7,36) (3,35,8,40) (4,34,9,39) (5,33,10,38) (11,27,16,22) (12,26,17,21) (13,30,18,25) (14,29,19,24) (15,28,20,23)

11.40-5.0.2-2-4-4.2.8
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,31,6,36) (2,35,7,40) (3,34,8,39) (4,33,9,38) (5,32,10,37) (11,26,16,21) (12,30,17,25) (13,29,18,24) (14,28,19,23) (15,27,20,22)
  (1,32,6,37) (2,31,7,36) (3,35,8,40) (4,34,9,39) (5,33,10,38) (11,27,16,22) (12,26,17,21) (13,30,18,25) (14,29,19,24) (15,28,20,23)

11.40-5.0.2-2-4-4.2.9
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)
  (1,34,6,39) (2,33,7,38) (3,32,8,37) (4,31,9,36) (5,35,10,40) (11,29,16,24) (12,28,17,23) (13,27,18,22) (14,26,19,21) (15,30,20,25)

11.40-5.0.2-2-4-4.2.10
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)
  (1,31,6,36) (2,35,7,40) (3,34,8,39) (4,33,9,38) (5,32,10,37) (11,26,16,21) (12,30,17,25) (13,29,18,24) (14,28,19,23) (15,27,20,22)

11.40-5.0.2-2-4-4.2.11
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,32,6,37) (2,31,7,36) (3,35,8,40) (4,34,9,39) (5,33,10,38) (11,27,16,22) (12,26,17,21) (13,30,18,25) (14,29,19,24) (15,28,20,23)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)

11.40-5.0.2-2-4-4.2.12
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,30) (2,29) (3,28) (4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,40) (12,39) (13,38) (14,37) (15,36) (16,35) (17,34) (18,33) (19,32) (20,31)
  (1,34,6,39) (2,33,7,38) (3,32,8,37) (4,31,9,36) (5,35,10,40) (11,29,16,24) (12,28,17,23) (13,27,18,22) (14,26,19,21) (15,30,20,25)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)

Display number of generating vectors: