Properties

Label 11.40-5.0.2-2-4-4.1
Genus \(11\)
Quotient genus \(0\)
Group \(C_4\times D_5\)
Signature \([ 0; 2, 2, 4, 4 ]\)
Generating Vectors \(12\)

Related objects

Downloads

Learn more

Family Information

Genus: $11$
Quotient genus: $0$
Group name: $C_4\times D_5$
Group identifier: $[40,5]$
Signature: $[ 0; 2, 2, 4, 4 ]$
Conjugacy classes for this refined passport: $3, 3, 7, 8$

The full automorphism group for this family is $D_4\times D_5$ with signature $[ 0; 2, 2, 2, 4 ]$.

Jacobian variety group algebra decomposition:$E\times A_{2}\times A_{4}^{2}$
Corresponding character(s): $4, 5, 13$

Generating vector(s)

Displaying 12 of 12 generating vectors for this refined passport.

11.40-5.0.2-2-4-4.1.1

  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)

11.40-5.0.2-2-4-4.1.2
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)

11.40-5.0.2-2-4-4.1.3
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,23) (2,22) (3,21) (4,25) (5,24) (6,28) (7,27) (8,26) (9,30) (10,29) (11,33) (12,32) (13,31) (14,35) (15,34) (16,38) (17,37) (18,36) (19,40) (20,39)
  (1,31,6,36) (2,35,7,40) (3,34,8,39) (4,33,9,38) (5,32,10,37) (11,26,16,21) (12,30,17,25) (13,29,18,24) (14,28,19,23) (15,27,20,22)
  (1,39,6,34) (2,38,7,33) (3,37,8,32) (4,36,9,31) (5,40,10,35) (11,24,16,29) (12,23,17,28) (13,22,18,27) (14,21,19,26) (15,25,20,30)

11.40-5.0.2-2-4-4.1.4
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,23) (2,22) (3,21) (4,25) (5,24) (6,28) (7,27) (8,26) (9,30) (10,29) (11,33) (12,32) (13,31) (14,35) (15,34) (16,38) (17,37) (18,36) (19,40) (20,39)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)
  (1,36,6,31) (2,40,7,35) (3,39,8,34) (4,38,9,33) (5,37,10,32) (11,21,16,26) (12,25,17,30) (13,24,18,29) (14,23,19,28) (15,22,20,27)

11.40-5.0.2-2-4-4.1.5
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,23) (2,22) (3,21) (4,25) (5,24) (6,28) (7,27) (8,26) (9,30) (10,29) (11,33) (12,32) (13,31) (14,35) (15,34) (16,38) (17,37) (18,36) (19,40) (20,39)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)

11.40-5.0.2-2-4-4.1.6
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,23) (2,22) (3,21) (4,25) (5,24) (6,28) (7,27) (8,26) (9,30) (10,29) (11,33) (12,32) (13,31) (14,35) (15,34) (16,38) (17,37) (18,36) (19,40) (20,39)
  (1,32,6,37) (2,31,7,36) (3,35,8,40) (4,34,9,39) (5,33,10,38) (11,27,16,22) (12,26,17,21) (13,30,18,25) (14,29,19,24) (15,28,20,23)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)

11.40-5.0.2-2-4-4.1.7
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,23) (2,22) (3,21) (4,25) (5,24) (6,28) (7,27) (8,26) (9,30) (10,29) (11,33) (12,32) (13,31) (14,35) (15,34) (16,38) (17,37) (18,36) (19,40) (20,39)
  (1,34,6,39) (2,33,7,38) (3,32,8,37) (4,31,9,36) (5,35,10,40) (11,29,16,24) (12,28,17,23) (13,27,18,22) (14,26,19,21) (15,30,20,25)
  (1,37,6,32) (2,36,7,31) (3,40,8,35) (4,39,9,34) (5,38,10,33) (11,22,16,27) (12,21,17,26) (13,25,18,30) (14,24,19,29) (15,23,20,28)

11.40-5.0.2-2-4-4.1.8
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,25) (2,24) (3,23) (4,22) (5,21) (6,30) (7,29) (8,28) (9,27) (10,26) (11,35) (12,34) (13,33) (14,32) (15,31) (16,40) (17,39) (18,38) (19,37) (20,36)
  (1,31,6,36) (2,35,7,40) (3,34,8,39) (4,33,9,38) (5,32,10,37) (11,26,16,21) (12,30,17,25) (13,29,18,24) (14,28,19,23) (15,27,20,22)
  (1,37,6,32) (2,36,7,31) (3,40,8,35) (4,39,9,34) (5,38,10,33) (11,22,16,27) (12,21,17,26) (13,25,18,30) (14,24,19,29) (15,23,20,28)

11.40-5.0.2-2-4-4.1.9
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,25) (2,24) (3,23) (4,22) (5,21) (6,30) (7,29) (8,28) (9,27) (10,26) (11,35) (12,34) (13,33) (14,32) (15,31) (16,40) (17,39) (18,38) (19,37) (20,36)
  (1,33,6,38) (2,32,7,37) (3,31,8,36) (4,35,9,40) (5,34,10,39) (11,28,16,23) (12,27,17,22) (13,26,18,21) (14,30,19,25) (15,29,20,24)
  (1,39,6,34) (2,38,7,33) (3,37,8,32) (4,36,9,31) (5,40,10,35) (11,24,16,29) (12,23,17,28) (13,22,18,27) (14,21,19,26) (15,25,20,30)

11.40-5.0.2-2-4-4.1.10
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,25) (2,24) (3,23) (4,22) (5,21) (6,30) (7,29) (8,28) (9,27) (10,26) (11,35) (12,34) (13,33) (14,32) (15,31) (16,40) (17,39) (18,38) (19,37) (20,36)
  (1,35,6,40) (2,34,7,39) (3,33,8,38) (4,32,9,37) (5,31,10,36) (11,30,16,25) (12,29,17,24) (13,28,18,23) (14,27,19,22) (15,26,20,21)
  (1,36,6,31) (2,40,7,35) (3,39,8,34) (4,38,9,33) (5,37,10,32) (11,21,16,26) (12,25,17,30) (13,24,18,29) (14,23,19,28) (15,22,20,27)

11.40-5.0.2-2-4-4.1.11
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,25) (2,24) (3,23) (4,22) (5,21) (6,30) (7,29) (8,28) (9,27) (10,26) (11,35) (12,34) (13,33) (14,32) (15,31) (16,40) (17,39) (18,38) (19,37) (20,36)
  (1,32,6,37) (2,31,7,36) (3,35,8,40) (4,34,9,39) (5,33,10,38) (11,27,16,22) (12,26,17,21) (13,30,18,25) (14,29,19,24) (15,28,20,23)
  (1,38,6,33) (2,37,7,32) (3,36,8,31) (4,40,9,35) (5,39,10,34) (11,23,16,28) (12,22,17,27) (13,21,18,26) (14,25,19,30) (15,24,20,29)

11.40-5.0.2-2-4-4.1.12
  (1,21) (2,25) (3,24) (4,23) (5,22) (6,26) (7,30) (8,29) (9,28) (10,27) (11,31) (12,35) (13,34) (14,33) (15,32) (16,36) (17,40) (18,39) (19,38) (20,37)
  (1,25) (2,24) (3,23) (4,22) (5,21) (6,30) (7,29) (8,28) (9,27) (10,26) (11,35) (12,34) (13,33) (14,32) (15,31) (16,40) (17,39) (18,38) (19,37) (20,36)
  (1,34,6,39) (2,33,7,38) (3,32,8,37) (4,31,9,36) (5,35,10,40) (11,29,16,24) (12,28,17,23) (13,27,18,22) (14,26,19,21) (15,30,20,25)
  (1,40,6,35) (2,39,7,34) (3,38,8,33) (4,37,9,32) (5,36,10,31) (11,25,16,30) (12,24,17,29) (13,23,18,28) (14,22,19,27) (15,21,20,26)

Display number of generating vectors: