Properties

Label 11.40-12.0.2-2-4-4.8
Genus \(11\)
Quotient genus \(0\)
Group \(C_2\times F_5\)
Signature \([ 0; 2, 2, 4, 4 ]\)
Generating Vectors \(6\)

Related objects

Downloads

Learn more

Family Information

Genus: $11$
Quotient genus: $0$
Group name: $C_2\times F_5$
Group identifier: $[40,12]$
Signature: $[ 0; 2, 2, 4, 4 ]$
Conjugacy classes for this refined passport: $3, 4, 6, 7$

Jacobian variety group algebra decomposition:$A_{2}\times E\times E^{4}\times E^{4}$
Corresponding character(s): $5, 7, 9, 10$

Other Data

Hyperelliptic curve(s):no
Cyclic trigonal curve(s):no

Generating vector(s)

Displaying 6 of 6 generating vectors for this refined passport.

11.40-12.0.2-2-4-4.8.1

  (1,6) (2,10) (3,9) (4,8) (5,7) (11,16) (12,20) (13,19) (14,18) (15,17) (21,26) (22,30) (23,29) (24,28) (25,27) (31,36) (32,40) (33,39) (34,38) (35,37)
  (1,16) (2,20) (3,19) (4,18) (5,17) (6,11) (7,15) (8,14) (9,13) (10,12) (21,36) (22,40) (23,39) (24,38) (25,37) (26,31) (27,35) (28,34) (29,33) (30,32)
  (1,29,8,25) (2,27,7,22) (3,30,6,24) (4,28,10,21) (5,26,9,23) (11,39,18,35) (12,37,17,32) (13,40,16,34) (14,38,20,31) (15,36,19,33)
  (1,35,8,39) (2,32,7,37) (3,34,6,40) (4,31,10,38) (5,33,9,36) (11,25,18,29) (12,22,17,27) (13,24,16,30) (14,21,20,28) (15,23,19,26)

11.40-12.0.2-2-4-4.8.2
  (1,6) (2,10) (3,9) (4,8) (5,7) (11,16) (12,20) (13,19) (14,18) (15,17) (21,26) (22,30) (23,29) (24,28) (25,27) (31,36) (32,40) (33,39) (34,38) (35,37)
  (1,18) (2,17) (3,16) (4,20) (5,19) (6,13) (7,12) (8,11) (9,15) (10,14) (21,38) (22,37) (23,36) (24,40) (25,39) (26,33) (27,32) (28,31) (29,35) (30,34)
  (1,26,6,21) (2,29,10,23) (3,27,9,25) (4,30,8,22) (5,28,7,24) (11,36,16,31) (12,39,20,33) (13,37,19,35) (14,40,18,32) (15,38,17,34)
  (1,34,10,37) (2,31,9,40) (3,33,8,38) (4,35,7,36) (5,32,6,39) (11,24,20,27) (12,21,19,30) (13,23,18,28) (14,25,17,26) (15,22,16,29)

11.40-12.0.2-2-4-4.8.3
  (1,6) (2,10) (3,9) (4,8) (5,7) (11,16) (12,20) (13,19) (14,18) (15,17) (21,26) (22,30) (23,29) (24,28) (25,27) (31,36) (32,40) (33,39) (34,38) (35,37)
  (1,18) (2,17) (3,16) (4,20) (5,19) (6,13) (7,12) (8,11) (9,15) (10,14) (21,38) (22,37) (23,36) (24,40) (25,39) (26,33) (27,32) (28,31) (29,35) (30,34)
  (1,29,8,25) (2,27,7,22) (3,30,6,24) (4,28,10,21) (5,26,9,23) (11,39,18,35) (12,37,17,32) (13,40,16,34) (14,38,20,31) (15,36,19,33)
  (1,33,7,40) (2,35,6,38) (3,32,10,36) (4,34,9,39) (5,31,8,37) (11,23,17,30) (12,25,16,28) (13,22,20,26) (14,24,19,29) (15,21,18,27)

11.40-12.0.2-2-4-4.8.4
  (1,6) (2,10) (3,9) (4,8) (5,7) (11,16) (12,20) (13,19) (14,18) (15,17) (21,26) (22,30) (23,29) (24,28) (25,27) (31,36) (32,40) (33,39) (34,38) (35,37)
  (1,18) (2,17) (3,16) (4,20) (5,19) (6,13) (7,12) (8,11) (9,15) (10,14) (21,38) (22,37) (23,36) (24,40) (25,39) (26,33) (27,32) (28,31) (29,35) (30,34)
  (1,27,10,24) (2,30,9,21) (3,28,8,23) (4,26,7,25) (5,29,6,22) (11,37,20,34) (12,40,19,31) (13,38,18,33) (14,36,17,35) (15,39,16,32)
  (1,32,9,38) (2,34,8,36) (3,31,7,39) (4,33,6,37) (5,35,10,40) (11,22,19,28) (12,24,18,26) (13,21,17,29) (14,23,16,27) (15,25,20,30)

11.40-12.0.2-2-4-4.8.5
  (1,6) (2,10) (3,9) (4,8) (5,7) (11,16) (12,20) (13,19) (14,18) (15,17) (21,26) (22,30) (23,29) (24,28) (25,27) (31,36) (32,40) (33,39) (34,38) (35,37)
  (1,18) (2,17) (3,16) (4,20) (5,19) (6,13) (7,12) (8,11) (9,15) (10,14) (21,38) (22,37) (23,36) (24,40) (25,39) (26,33) (27,32) (28,31) (29,35) (30,34)
  (1,30,7,23) (2,28,6,25) (3,26,10,22) (4,29,9,24) (5,27,8,21) (11,40,17,33) (12,38,16,35) (13,36,20,32) (14,39,19,34) (15,37,18,31)
  (1,31,6,36) (2,33,10,39) (3,35,9,37) (4,32,8,40) (5,34,7,38) (11,21,16,26) (12,23,20,29) (13,25,19,27) (14,22,18,30) (15,24,17,28)

11.40-12.0.2-2-4-4.8.6
  (1,6) (2,10) (3,9) (4,8) (5,7) (11,16) (12,20) (13,19) (14,18) (15,17) (21,26) (22,30) (23,29) (24,28) (25,27) (31,36) (32,40) (33,39) (34,38) (35,37)
  (1,18) (2,17) (3,16) (4,20) (5,19) (6,13) (7,12) (8,11) (9,15) (10,14) (21,38) (22,37) (23,36) (24,40) (25,39) (26,33) (27,32) (28,31) (29,35) (30,34)
  (1,28,9,22) (2,26,8,24) (3,29,7,21) (4,27,6,23) (5,30,10,25) (11,38,19,32) (12,36,18,34) (13,39,17,31) (14,37,16,33) (15,40,20,35)
  (1,35,8,39) (2,32,7,37) (3,34,6,40) (4,31,10,38) (5,33,9,36) (11,25,18,29) (12,22,17,27) (13,24,16,30) (14,21,20,28) (15,23,19,26)

Display number of generating vectors: