Family Information
| Genus: | $11$ |
| Quotient genus: | $0$ |
| Group name: | $D_4:C_4$ |
| Group identifier: | $[32,9]$ |
| Signature: | $[ 0; 2, 2, 4, 8 ]$ |
| Conjugacy classes for this refined passport: | $3, 6, 10, 11$ |
| Jacobian variety group algebra decomposition: | $E\times A_{2}\times E^{2}\times A_{3}^{2}$ |
| Corresponding character(s): | $5, 6, 10, 12$ |
Other Data
| Hyperelliptic curve(s): | yes |
| Hyperelliptic involution: | (1,3) (2,4) (5,7) (6,8) (9,11) (10,12) (13,15) (14,16) (17,19) (18,20) (21,23) (22,24) (25,27) (26,28) (29,31) (30,32) |
| Cyclic trigonal curve(s): | no |
| Equation(s) of curve(s) in this refined passport: |
| $y^2=(x^{8}-1)(x^{16}+a_{1}x^{8}+1)$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
11.32-9.0.2-2-4-8.15.1
| (1,3) (2,4) (5,7) (6,8) (9,11) (10,12) (13,15) (14,16) (17,19) (18,20) (21,23) (22,24) (25,27) (26,28) (29,31) (30,32) | |
| (1,11) (2,12) (3,9) (4,10) (5,16) (6,15) (7,14) (8,13) (17,27) (18,28) (19,25) (20,26) (21,32) (22,31) (23,30) (24,29) | |
| (1,19,3,17) (2,20,4,18) (5,24,7,22) (6,23,8,21) (9,31,11,29) (10,32,12,30) (13,27,15,25) (14,28,16,26) | |
| (1,25,8,32,2,26,7,31) (3,27,6,30,4,28,5,29) (9,22,16,20,10,21,15,19) (11,24,14,18,12,23,13,17) |