Family Information
Genus: | $11$ |
Quotient genus: | $0$ |
Group name: | $D_{12}$ |
Group identifier: | $[24,6]$ |
Signature: | $[ 0; 2, 2, 12, 12 ]$ |
Conjugacy classes for this refined passport: | $3, 3, 9, 9$ |
The full automorphism group for this family is $C_2\times D_{12}$ with signature $[ 0; 2, 2, 2, 12 ]$.
Jacobian variety group algebra decomposition: | $E\times E^{2}\times E^{2}\times E^{2}\times A_{2}^{2}$ |
Corresponding character(s): | $4, 5, 6, 7, 8$ |
Generating vector(s)
Displaying 2 of 2 generating vectors for this refined passport.
11.24-6.0.2-2-12-12.3.1
(1,13) (2,15) (3,14) (4,16) (5,18) (6,17) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20) | |
(1,13) (2,15) (3,14) (4,16) (5,18) (6,17) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20) | |
(1,9,5,10,3,8,4,12,2,7,6,11) (13,21,17,22,15,20,16,24,14,19,18,23) | |
(1,11,6,7,2,12,4,8,3,10,5,9) (13,23,18,19,14,24,16,20,15,22,17,21) |
11.24-6.0.2-2-12-12.3.2
(1,13) (2,15) (3,14) (4,16) (5,18) (6,17) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20) | |
(1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,21) (8,20) (9,19) (10,24) (11,23) (12,22) | |
(1,9,5,10,3,8,4,12,2,7,6,11) (13,21,17,22,15,20,16,24,14,19,18,23) | |
(1,9,5,10,3,8,4,12,2,7,6,11) (13,21,17,22,15,20,16,24,14,19,18,23) |