Family Information
Genus: | $11$ |
Quotient genus: | $0$ |
Group name: | $C_4\times S_3$ |
Group identifier: | $[24,5]$ |
Signature: | $[ 0; 2, 3, 4, 12 ]$ |
Conjugacy classes for this refined passport: | $3, 5, 8, 12$ |
Jacobian variety group algebra decomposition: | $E\times E^{2}\times E^{2}\times A_{3}^{2}$ |
Corresponding character(s): | $5, 9, 10, 11$ |
Other Data
Hyperelliptic curve(s): | no |
Cyclic trigonal curve(s): | no |
Generating vector(s)
Displaying 2 of 2 generating vectors for this refined passport.
11.24-5.0.2-3-4-12.1.1
(1,13) (2,15) (3,14) (4,16) (5,18) (6,17) (7,19) (8,21) (9,20) (10,22) (11,24) (12,23) | |
(1,2,3) (4,5,6) (7,8,9) (10,11,12) (13,14,15) (16,17,18) (19,20,21) (22,23,24) | |
(1,19,4,22) (2,21,5,24) (3,20,6,23) (7,16,10,13) (8,18,11,15) (9,17,12,14) | |
(1,11,6,7,2,12,4,8,3,10,5,9) (13,23,18,19,14,24,16,20,15,22,17,21) |
11.24-5.0.2-3-4-12.1.2
(1,13) (2,15) (3,14) (4,16) (5,18) (6,17) (7,19) (8,21) (9,20) (10,22) (11,24) (12,23) | |
(1,2,3) (4,5,6) (7,8,9) (10,11,12) (13,14,15) (16,17,18) (19,20,21) (22,23,24) | |
(1,21,4,24) (2,20,5,23) (3,19,6,22) (7,18,10,15) (8,17,11,14) (9,16,12,13) | |
(1,12,5,7,3,11,4,9,2,10,6,8) (13,24,17,19,15,23,16,21,14,22,18,20) |