Properties

Label 11.24-5.0.2-2-12-12.4
Genus \(11\)
Quotient genus \(0\)
Group \(C_4\times S_3\)
Signature \([ 0; 2, 2, 12, 12 ]\)
Generating Vectors \(2\)

Related objects

Downloads

Learn more

Family Information

Genus: $11$
Quotient genus: $0$
Group name: $C_4\times S_3$
Group identifier: $[24,5]$
Signature: $[ 0; 2, 2, 12, 12 ]$
Conjugacy classes for this refined passport: $4, 4, 11, 12$

The full automorphism group for this family is $S_3\times D_4$ with signature $[ 0; 2, 2, 2, 12 ]$.

Jacobian variety group algebra decomposition:$E\times A_{2}\times E^{2}\times E^{2}\times A_{2}^{2}$
Corresponding character(s): $4, 6, 9, 10, 11$

Generating vector(s)

Displaying 2 of 2 generating vectors for this refined passport.

11.24-5.0.2-2-12-12.4.1

  (1,16) (2,18) (3,17) (4,13) (5,15) (6,14) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20)
  (1,16) (2,18) (3,17) (4,13) (5,15) (6,14) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20)
  (1,8,6,10,2,9,4,11,3,7,5,12) (13,20,18,22,14,21,16,23,15,19,17,24)
  (1,12,5,7,3,11,4,9,2,10,6,8) (13,24,17,19,15,23,16,21,14,22,18,20)

11.24-5.0.2-2-12-12.4.2
  (1,16) (2,18) (3,17) (4,13) (5,15) (6,14) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20)
  (1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,24) (8,23) (9,22) (10,21) (11,20) (12,19)
  (1,9,5,10,3,8,4,12,2,7,6,11) (13,21,17,22,15,20,16,24,14,19,18,23)
  (1,12,5,7,3,11,4,9,2,10,6,8) (13,24,17,19,15,23,16,21,14,22,18,20)

Display number of generating vectors: