Family Information
Genus: | $11$ |
Quotient genus: | $0$ |
Group name: | $C_4\times S_3$ |
Group identifier: | $[24,5]$ |
Signature: | $[ 0; 2, 2, 12, 12 ]$ |
Conjugacy classes for this refined passport: | $4, 4, 11, 12$ |
The full automorphism group for this family is $S_3\times D_4$ with signature $[ 0; 2, 2, 2, 12 ]$.
Jacobian variety group algebra decomposition: | $E\times A_{2}\times E^{2}\times E^{2}\times A_{2}^{2}$ |
Corresponding character(s): | $4, 6, 9, 10, 11$ |
Generating vector(s)
Displaying 2 of 2 generating vectors for this refined passport.
11.24-5.0.2-2-12-12.4.1
(1,16) (2,18) (3,17) (4,13) (5,15) (6,14) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20) | |
(1,16) (2,18) (3,17) (4,13) (5,15) (6,14) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20) | |
(1,8,6,10,2,9,4,11,3,7,5,12) (13,20,18,22,14,21,16,23,15,19,17,24) | |
(1,12,5,7,3,11,4,9,2,10,6,8) (13,24,17,19,15,23,16,21,14,22,18,20) |
11.24-5.0.2-2-12-12.4.2
(1,16) (2,18) (3,17) (4,13) (5,15) (6,14) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20) | |
(1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,24) (8,23) (9,22) (10,21) (11,20) (12,19) | |
(1,9,5,10,3,8,4,12,2,7,6,11) (13,21,17,22,15,20,16,24,14,19,18,23) | |
(1,12,5,7,3,11,4,9,2,10,6,8) (13,24,17,19,15,23,16,21,14,22,18,20) |