Properties

Label 11.16-13.0.2-2-2-2-2-4.9
Genus \(11\)
Quotient genus \(0\)
Group \(D_4:C_2\)
Signature \([ 0; 2, 2, 2, 2, 2, 4 ]\)
Generating Vectors \(4\)

Related objects

Downloads

Learn more

Family Information

Genus: $11$
Quotient genus: $0$
Group name: $D_4:C_2$
Group identifier: $[16,13]$
Signature: $[ 0; 2, 2, 2, 2, 2, 4 ]$
Conjugacy classes for this refined passport: $3, 4, 4, 4, 5, 7$

Jacobian variety group algebra decomposition:$E\times A_{2}\times E\times E\times A_{3}^{2}$
Corresponding character(s): $2, 3, 5, 8, 9$

Other Data

Hyperelliptic curve(s):no
Cyclic trigonal curve(s):no

Generating vector(s)

Displaying 4 of 4 generating vectors for this refined passport.

11.16-13.0.2-2-2-2-2-4.9.1

  (1,5) (2,6) (3,7) (4,8) (9,13) (10,14) (11,15) (12,16)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,15) (2,16) (3,14) (4,13) (5,12) (6,11) (7,9) (8,10)
  (1,4,2,3) (5,8,6,7) (9,12,10,11) (13,16,14,15)

11.16-13.0.2-2-2-2-2-4.9.2
  (1,5) (2,6) (3,7) (4,8) (9,13) (10,14) (11,15) (12,16)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,10) (2,9) (3,12) (4,11) (5,13) (6,14) (7,15) (8,16)
  (1,16) (2,15) (3,13) (4,14) (5,11) (6,12) (7,10) (8,9)
  (1,4,2,3) (5,8,6,7) (9,12,10,11) (13,16,14,15)

11.16-13.0.2-2-2-2-2-4.9.3
  (1,5) (2,6) (3,7) (4,8) (9,13) (10,14) (11,15) (12,16)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,10) (2,9) (3,12) (4,11) (5,13) (6,14) (7,15) (8,16)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,16) (2,15) (3,13) (4,14) (5,11) (6,12) (7,10) (8,9)
  (1,4,2,3) (5,8,6,7) (9,12,10,11) (13,16,14,15)

11.16-13.0.2-2-2-2-2-4.9.4
  (1,5) (2,6) (3,7) (4,8) (9,13) (10,14) (11,15) (12,16)
  (1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15)
  (1,10) (2,9) (3,12) (4,11) (5,13) (6,14) (7,15) (8,16)
  (1,10) (2,9) (3,12) (4,11) (5,13) (6,14) (7,15) (8,16)
  (1,15) (2,16) (3,14) (4,13) (5,12) (6,11) (7,9) (8,10)
  (1,4,2,3) (5,8,6,7) (9,12,10,11) (13,16,14,15)

Display number of generating vectors: