Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $\He_3:C_3$ |
Group identifier: | $[81,9]$ |
Signature: | $[ 0; 3, 3, 9 ]$ |
Conjugacy classes for this refined passport: | $6, 11, 15$ |
The full automorphism group for this family is $\He_3.C_6$ with signature $[ 0; 2, 3, 18 ]$.
Jacobian variety group algebra decomposition: | $E\times A_{3}^{3}$ |
Corresponding character(s): | $2, 12$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.81-9.0.3-3-9.5.1
(1,28,55) (2,29,56) (3,30,57) (4,32,60) (5,33,58) (6,31,59) (7,36,62) (8,34,63) (9,35,61) (10,40,71) (11,41,72) (12,42,70) (13,44,64) (14,45,65) (15,43,66) (16,39,69) (17,37,67) (18,38,68) (19,52,78) (20,53,76) (21,54,77) (22,47,80) (23,48,81) (24,46,79) (25,51,73) (26,49,74) (27,50,75) | |
(1,70,48) (2,71,46) (3,72,47) (4,66,49) (5,64,50) (6,65,51) (7,68,53) (8,69,54) (9,67,52) (10,77,32) (11,78,33) (12,76,31) (13,79,36) (14,80,34) (15,81,35) (16,75,28) (17,73,29) (18,74,30) (19,56,44) (20,57,45) (21,55,43) (22,58,39) (23,59,37) (24,60,38) (25,63,40) (26,61,41) (27,62,42) | |
(1,23,17,2,24,18,3,22,16) (4,26,11,5,27,12,6,25,10) (7,20,14,8,21,15,9,19,13) (28,50,44,29,51,45,30,49,43) (31,53,38,32,54,39,33,52,37) (34,47,41,35,48,42,36,46,40) (55,77,71,56,78,72,57,76,70) (58,80,65,59,81,66,60,79,64) (61,74,68,62,75,69,63,73,67) |