Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $\He_3:C_3$ |
Group identifier: | $[81,9]$ |
Signature: | $[ 0; 3, 3, 9 ]$ |
Conjugacy classes for this refined passport: | $8, 11, 12$ |
The full automorphism group for this family is $\He_3.C_6$ with signature $[ 0; 2, 3, 18 ]$.
Jacobian variety group algebra decomposition: | $E\times A_{3}^{3}$ |
Corresponding character(s): | $2, 12$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.81-9.0.3-3-9.13.1
(1,37,76) (2,38,77) (3,39,78) (4,41,81) (5,42,79) (6,40,80) (7,45,74) (8,43,75) (9,44,73) (10,49,55) (11,50,56) (12,51,57) (13,53,60) (14,54,58) (15,52,59) (16,48,62) (17,46,63) (18,47,61) (19,36,71) (20,34,72) (21,35,70) (22,28,64) (23,29,65) (24,30,66) (25,32,69) (26,33,67) (27,31,68) | |
(1,72,46) (2,70,47) (3,71,48) (4,65,50) (5,66,51) (6,64,49) (7,67,54) (8,68,52) (9,69,53) (10,76,33) (11,77,31) (12,78,32) (13,81,34) (14,79,35) (15,80,36) (16,74,29) (17,75,30) (18,73,28) (19,55,45) (20,56,43) (21,57,44) (22,60,37) (23,58,38) (24,59,39) (25,62,41) (26,63,42) (27,61,40) | |
(1,17,24,3,16,23,2,18,22) (4,11,27,6,10,26,5,12,25) (7,14,21,9,13,20,8,15,19) (28,44,51,30,43,50,29,45,49) (31,38,54,33,37,53,32,39,52) (34,41,48,36,40,47,35,42,46) (55,71,78,57,70,77,56,72,76) (58,65,81,60,64,80,59,66,79) (61,68,75,63,67,74,62,69,73) |