Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $\He_3:C_3$ |
Group identifier: | $[81,9]$ |
Signature: | $[ 0; 3, 3, 9 ]$ |
Conjugacy classes for this refined passport: | $7, 10, 14$ |
The full automorphism group for this family is $\He_3.C_6$ with signature $[ 0; 2, 3, 18 ]$.
Jacobian variety group algebra decomposition: | $E\times A_{3}^{3}$ |
Corresponding character(s): | $2, 12$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.81-9.0.3-3-9.11.1
(1,55,28) (2,56,29) (3,57,30) (4,60,32) (5,58,33) (6,59,31) (7,62,36) (8,63,34) (9,61,35) (10,71,40) (11,72,41) (12,70,42) (13,64,44) (14,65,45) (15,66,43) (16,69,39) (17,67,37) (18,68,38) (19,78,52) (20,76,53) (21,77,54) (22,80,47) (23,81,48) (24,79,46) (25,73,51) (26,74,49) (27,75,50) | |
(1,48,70) (2,46,71) (3,47,72) (4,49,66) (5,50,64) (6,51,65) (7,53,68) (8,54,69) (9,52,67) (10,32,77) (11,33,78) (12,31,76) (13,36,79) (14,34,80) (15,35,81) (16,28,75) (17,29,73) (18,30,74) (19,44,56) (20,45,57) (21,43,55) (22,39,58) (23,37,59) (24,38,60) (25,40,63) (26,41,61) (27,42,62) | |
(1,12,20,3,11,19,2,10,21) (4,15,23,6,14,22,5,13,24) (7,18,26,9,17,25,8,16,27) (28,39,47,30,38,46,29,37,48) (31,42,50,33,41,49,32,40,51) (34,45,53,36,44,52,35,43,54) (55,66,74,57,65,73,56,64,75) (58,69,77,60,68,76,59,67,78) (61,72,80,63,71,79,62,70,81) |