Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $C_3\wr C_3$ |
Group identifier: | $[81,7]$ |
Signature: | $[ 0; 3, 3, 9 ]$ |
Conjugacy classes for this refined passport: | $6, 13, 16$ |
The full automorphism group for this family is $C_3^3:A_4$ with signature $[ 0; 2, 3, 9 ]$.
Jacobian variety group algebra decomposition: | $E\times A_{2}^{3}\times E^{3}$ |
Corresponding character(s): | $3, 12, 14$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.81-7.0.3-3-9.2.1
(1,10,19) (2,11,20) (3,12,21) (4,13,22) (5,14,23) (6,15,24) (7,16,25) (8,17,26) (9,18,27) (28,37,46) (29,38,47) (30,39,48) (31,40,49) (32,41,50) (33,42,51) (34,43,52) (35,44,53) (36,45,54) (55,64,73) (56,65,74) (57,66,75) (58,67,76) (59,68,77) (60,69,78) (61,70,79) (62,71,80) (63,72,81) | |
(1,55,28) (2,56,29) (3,57,30) (4,60,32) (5,58,33) (6,59,31) (7,62,36) (8,63,34) (9,61,35) (10,71,40) (11,72,41) (12,70,42) (13,64,44) (14,65,45) (15,66,43) (16,69,39) (17,67,37) (18,68,38) (19,78,52) (20,76,53) (21,77,54) (22,80,47) (23,81,48) (24,79,46) (25,73,51) (26,74,49) (27,75,50) | |
(1,46,70,3,48,72,2,47,71) (4,50,66,6,49,65,5,51,64) (7,54,68,9,53,67,8,52,69) (10,31,77,12,33,76,11,32,78) (13,35,79,15,34,81,14,36,80) (16,30,75,18,29,74,17,28,73) (19,43,57,21,45,56,20,44,55) (22,38,59,24,37,58,23,39,60) (25,42,61,27,41,63,26,40,62) |