Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $C_6\wr C_2$ |
Group identifier: | $[72,30]$ |
Signature: | $[ 0; 2, 6, 12 ]$ |
Conjugacy classes for this refined passport: | $4, 23, 26$ |
The full automorphism group for this family is $C_3^2:S_4$ with signature $[ 0; 2, 3, 12 ]$.
Jacobian variety group algebra decomposition: | $E\times E\times E^{2}\times E^{2}\times E^{2}\times E^{2}$ |
Corresponding character(s): | $5, 6, 16, 18, 19, 22$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.72-30.0.2-6-12.4.1
(1,37) (2,39) (3,38) (4,40) (5,42) (6,41) (7,43) (8,45) (9,44) (10,46) (11,48) (12,47) (13,49) (14,51) (15,50) (16,52) (17,54) (18,53) (19,58) (20,60) (21,59) (22,55) (23,57) (24,56) (25,64) (26,66) (27,65) (28,61) (29,63) (30,62) (31,70) (32,72) (33,71) (34,67) (35,69) (36,68) | |
(1,32,9,19,14,27) (2,33,7,20,15,25) (3,31,8,21,13,26) (4,35,12,22,17,30) (5,36,10,23,18,28) (6,34,11,24,16,29) (37,68,45,55,50,63) (38,69,43,56,51,61) (39,67,44,57,49,62) (40,71,48,58,53,66) (41,72,46,59,54,64) (42,70,47,60,52,65) | |
(1,65,16,56,7,71,4,62,13,59,10,68) (2,64,17,55,8,70,5,61,14,58,11,67) (3,66,18,57,9,72,6,63,15,60,12,69) (19,44,34,41,25,50,22,47,31,38,28,53) (20,43,35,40,26,49,23,46,32,37,29,52) (21,45,36,42,27,51,24,48,33,39,30,54) |