Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $C_6\wr C_2$ |
Group identifier: | $[72,30]$ |
Signature: | $[ 0; 2, 6, 12 ]$ |
Conjugacy classes for this refined passport: | $4, 22, 27$ |
The full automorphism group for this family is $C_3^2:S_4$ with signature $[ 0; 2, 3, 12 ]$.
Jacobian variety group algebra decomposition: | $E\times E\times E^{2}\times E^{2}\times E^{2}\times E^{2}$ |
Corresponding character(s): | $5, 6, 16, 18, 19, 22$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.72-30.0.2-6-12.3.1
(1,37) (2,39) (3,38) (4,40) (5,42) (6,41) (7,43) (8,45) (9,44) (10,46) (11,48) (12,47) (13,49) (14,51) (15,50) (16,52) (17,54) (18,53) (19,58) (20,60) (21,59) (22,55) (23,57) (24,56) (25,64) (26,66) (27,65) (28,61) (29,63) (30,62) (31,70) (32,72) (33,71) (34,67) (35,69) (36,68) | |
(1,27,14,19,9,32) (2,25,15,20,7,33) (3,26,13,21,8,31) (4,30,17,22,12,35) (5,28,18,23,10,36) (6,29,16,24,11,34) (37,63,50,55,45,68) (38,61,51,56,43,69) (39,62,49,57,44,67) (40,66,53,58,48,71) (41,64,54,59,46,72) (42,65,52,60,47,70) | |
(1,72,10,57,13,66,4,69,7,60,16,63) (2,71,11,56,14,65,5,68,8,59,17,62) (3,70,12,55,15,64,6,67,9,58,18,61) (19,51,28,42,31,45,22,54,25,39,34,48) (20,50,29,41,32,44,23,53,26,38,35,47) (21,49,30,40,33,43,24,52,27,37,36,46) |