Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $F_9:C_2$ |
Group identifier: | $[144,182]$ |
Signature: | $[ 0; 2, 4, 8 ]$ |
Conjugacy classes for this refined passport: | $3, 6, 9$ |
The full automorphism group for this family is $C_3^2:\GL(2,3)$ with signature $[ 0; 2, 3, 8 ]$.
Jacobian variety group algebra decomposition: | $E^{2}\times E^{8}$ |
Corresponding character(s): | $6, 8$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.144-182.0.2-4-8.2.1
(1,37) (2,39) (3,38) (4,42) (5,41) (6,40) (7,44) (8,43) (9,45) (10,46) (11,48) (12,47) (13,51) (14,50) (15,49) (16,53) (17,52) (18,54) (19,64) (20,66) (21,65) (22,69) (23,68) (24,67) (25,71) (26,70) (27,72) (28,55) (29,57) (30,56) (31,60) (32,59) (33,58) (34,62) (35,61) (36,63) (73,109) (74,111) (75,110) (76,114) (77,113) (78,112) (79,116) (80,115) (81,117) (82,118) (83,120) (84,119) (85,123) (86,122) (87,121) (88,125) (89,124) (90,126) (91,136) (92,138) (93,137) (94,141) (95,140) (96,139) (97,143) (98,142) (99,144) (100,127) (101,129) (102,128) (103,132) (104,131) (105,130) (106,134) (107,133) (108,135) | |
(1,114,11,126) (2,117,10,123) (3,111,12,120) (4,113,17,124) (5,116,16,121) (6,110,18,118) (7,112,14,125) (8,115,13,122) (9,109,15,119) (19,141,29,135) (20,144,28,132) (21,138,30,129) (22,140,35,133) (23,143,34,130) (24,137,36,127) (25,139,32,134) (26,142,31,131) (27,136,33,128) (37,96,47,108) (38,99,46,105) (39,93,48,102) (40,95,53,106) (41,98,52,103) (42,92,54,100) (43,94,50,107) (44,97,49,104) (45,91,51,101) (55,78,65,90) (56,81,64,87) (57,75,66,84) (58,77,71,88) (59,80,70,85) (60,74,72,82) (61,76,68,89) (62,79,67,86) (63,73,69,83) | |
(1,90,21,101,13,80,32,96) (2,85,26,104,15,73,36,93) (3,83,22,107,14,78,28,99) (4,89,23,105,10,81,30,92) (5,87,19,108,12,74,31,98) (6,82,27,102,11,76,35,95) (7,88,25,106,16,79,34,97) (8,86,24,100,18,75,29,94) (9,84,20,103,17,77,33,91) (37,135,57,119,49,143,68,114) (38,130,62,122,51,136,72,111) (39,128,58,125,50,141,64,117) (40,134,59,123,46,144,66,110) (41,132,55,126,48,137,67,116) (42,127,63,120,47,139,71,113) (43,133,61,124,52,142,70,115) (44,131,60,118,54,138,65,112) (45,129,56,121,53,140,69,109) |