Family Information
| Genus: | $10$ |
| Quotient genus: | $0$ |
| Group name: | $C_3^2:A_4$ |
| Group identifier: | $[108,22]$ |
| Signature: | $[ 0; 3, 3, 6 ]$ |
| Conjugacy classes for this refined passport: | $10, 11, 20$ |
The full automorphism group for this family is $C_3^2:S_4$ with signature $[ 0; 2, 3, 12 ]$.
| Jacobian variety group algebra decomposition: | $E\times E^{3}\times E^{3}\times E^{3}$ |
| Corresponding character(s): | $3, 12, 16, 17$ |
Generating vector(s)
Displaying the unique generating vector for this refined passport.
10.108-22.0.3-3-6.18.1
| (1,101,49) (2,103,52) (3,104,50) (4,102,51) (5,105,53) (6,107,56) (7,108,54) (8,106,55) (9,97,57) (10,99,60) (11,100,58) (12,98,59) (13,73,65) (14,75,68) (15,76,66) (16,74,67) (17,77,69) (18,79,72) (19,80,70) (20,78,71) (21,81,61) (22,83,64) (23,84,62) (24,82,63) (25,93,45) (26,95,48) (27,96,46) (28,94,47) (29,85,37) (30,87,40) (31,88,38) (32,86,39) (33,89,41) (34,91,44) (35,92,42) (36,90,43) | |
| (1,64,94) (2,61,96) (3,63,95) (4,62,93) (5,68,86) (6,65,88) (7,67,87) (8,66,85) (9,72,90) (10,69,92) (11,71,91) (12,70,89) (13,44,102) (14,41,104) (15,43,103) (16,42,101) (17,48,106) (18,45,108) (19,47,107) (20,46,105) (21,40,98) (22,37,100) (23,39,99) (24,38,97) (25,60,74) (26,57,76) (27,59,75) (28,58,73) (29,52,78) (30,49,80) (31,51,79) (32,50,77) (33,56,82) (34,53,84) (35,55,83) (36,54,81) | |
| (1,28,13,4,25,16) (2,27,14,3,26,15) (5,32,17,8,29,20) (6,31,18,7,30,19) (9,36,21,12,33,24) (10,35,22,11,34,23) (37,64,49,40,61,52) (38,63,50,39,62,51) (41,68,53,44,65,56) (42,67,54,43,66,55) (45,72,57,48,69,60) (46,71,58,47,70,59) (73,100,85,76,97,88) (74,99,86,75,98,87) (77,104,89,80,101,92) (78,103,90,79,102,91) (81,108,93,84,105,96) (82,107,94,83,106,95) |