Properties

Label 990.9.99.a1.a1
Order $ 2 \cdot 5 $
Index $ 3^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(99\)\(\medspace = 3^{2} \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, b^{99}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a Hall subgroup.

Ambient group ($G$) information

Description: $C_5\times D_{99}$
Order: \(990\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(990\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{60}.C_2^2$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}$
Normal closure:$C_5\times D_{99}$
Core:$C_5$
Minimal over-subgroups:$C_5\times D_{11}$$C_5\times S_3$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this conjugacy class$99$
Möbius function$0$
Projective image$D_{99}$